Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.21t | Structured version Visualization version GIF version |
Description: Closed form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2062. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021.) |
Ref | Expression |
---|---|
19.21t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5r 2052 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
2 | alim 1729 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
3 | 1, 2 | syl9 75 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) |
4 | 19.9t 2059 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
5 | 4 | imbi1d 330 | . . 3 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
6 | 19.38 1757 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
7 | 5, 6 | syl6bir 243 | . 2 ⊢ (Ⅎ𝑥𝜑 → ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓))) |
8 | 3, 7 | impbid 201 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 ∃wex 1695 Ⅎwnf 1699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-ex 1696 df-nf 1701 |
This theorem is referenced by: 19.21 2062 stdpc5OLD 2064 19.23t 2066 sbal1 2448 sbal2 2449 r19.21t 2938 ceqsalt 3201 sbciegft 3433 bj-ceqsalt0 32067 bj-ceqsalt1 32068 wl-sbhbt 32514 wl-2sb6d 32520 wl-sbalnae 32524 ax12indalem 33248 ax12inda2ALT 33249 |
Copyright terms: Public domain | W3C validator |