Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ralcom4 Structured version   Visualization version   GIF version

Theorem bj-ralcom4 32062
Description: Remove from ralcom4 3197 dependency on ax-ext 2590 and ax-13 2234 (and on df-or 384, df-an 385, df-tru 1478, df-sb 1868, df-clab 2597, df-cleq 2603, df-clel 2606, df-nfc 2740, df-v 3175). This proof uses only df-ral 2901 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ralcom4 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem bj-ralcom4
StepHypRef Expression
1 19.21v 1855 . . . . 5 (∀𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∀𝑦𝜑))
21bicomi 213 . . . 4 ((𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑦(𝑥𝐴𝜑))
32albii 1737 . . 3 (∀𝑥(𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑥𝑦(𝑥𝐴𝜑))
4 alcom 2024 . . 3 (∀𝑥𝑦(𝑥𝐴𝜑) ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
53, 4bitri 263 . 2 (∀𝑥(𝑥𝐴 → ∀𝑦𝜑) ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
6 df-ral 2901 . 2 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝜑))
7 df-ral 2901 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
87albii 1737 . 2 (∀𝑦𝑥𝐴 𝜑 ↔ ∀𝑦𝑥(𝑥𝐴𝜑))
95, 6, 83bitr4i 291 1 (∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473  wcel 1977  wral 2896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-11 2021
This theorem depends on definitions:  df-bi 196  df-ex 1696  df-ral 2901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator