Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rexcom4 | Structured version Visualization version GIF version |
Description: Remove from rexcom4 3198 dependency on ax-ext 2590 and ax-13 2234 (and on df-or 384, df-tru 1478, df-sb 1868, df-clab 2597, df-cleq 2603, df-clel 2606, df-nfc 2740, df-v 3175). This proof uses only df-rex 2902 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-rexcom4 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2902 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
2 | 19.42v 1905 | . . . . 5 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑)) | |
3 | 2 | bicomi 213 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | 3 | exbii 1764 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑) ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | excom 2029 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | df-rex 2902 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 6 | bicomi 213 | . . . . 5 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
8 | 7 | exbii 1764 | . . . 4 ⊢ (∃𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
9 | 5, 8 | bitri 263 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
10 | 4, 9 | bitri 263 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦𝜑) ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
11 | 1, 10 | bitri 263 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∃wex 1695 ∈ wcel 1977 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-11 2021 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-rex 2902 |
This theorem is referenced by: bj-rexcom4a 32064 |
Copyright terms: Public domain | W3C validator |