Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ralcom4 Structured version   Unicode version

Theorem bj-ralcom4 30995
 Description: Remove from ralcom4 3077 dependency on ax-ext 2380 and ax-13 2026 (and on df-or 368, df-an 369, df-tru 1408, df-sb 1764, df-clab 2388, df-cleq 2394, df-clel 2397, df-nfc 2552, df-v 3060). This proof uses only df-ral 2758 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ralcom4
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem bj-ralcom4
StepHypRef Expression
1 19.21v 1752 . . . . 5
21bicomi 202 . . . 4
32albii 1661 . . 3
4 alcom 1869 . . 3
53, 4bitri 249 . 2
6 df-ral 2758 . 2
7 df-ral 2758 . . 3
87albii 1661 . 2
95, 6, 83bitr4i 277 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184  wal 1403   wcel 1842  wral 2753 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-11 1866 This theorem depends on definitions:  df-bi 185  df-ex 1634  df-ral 2758 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator