Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abid2 Structured version   Visualization version   GIF version

Theorem bj-abid2 31970
Description: Remove dependency on ax-13 2234 from abid2 2732. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abid2 {𝑥𝑥𝐴} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-abid2
StepHypRef Expression
1 biid 250 . . 3 (𝑥𝐴𝑥𝐴)
21bj-abbi2i 31964 . 2 𝐴 = {𝑥𝑥𝐴}
32eqcomi 2619 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  {cab 2596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator