Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuv Structured version   Visualization version   GIF version

Theorem reuv 3194
 Description: A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 2903 . 2 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3176 . . . 4 𝑥 ∈ V
32biantrur 526 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43eubii 2480 . 2 (∃!𝑥𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 266 1 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  ∃!weu 2458  ∃!wreu 2898  Vcvv 3173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-reu 2903  df-v 3175 This theorem is referenced by:  euen1  7912  hlimeui  27481
 Copyright terms: Public domain W3C validator