Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfsb2 | Structured version Visualization version GIF version |
Description: Alternate (dual) definition of substitution df-sb 1868 not using dummy variables. (Contributed by BJ, 19-Mar-2021.) |
Ref | Expression |
---|---|
bj-dfsb2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 1868 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
2 | bj-sbsb 32012 | . 2 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) | |
3 | 1, 2 | bitri 263 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 ∀wal 1473 ∃wex 1695 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |