Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vtoclg1f Structured version   Visualization version   GIF version

Theorem bj-vtoclg1f 32103
 Description: Reprove vtoclg1f 3238 from bj-vtoclg1f1 32102. This removes dependency on ax-ext 2590, df-cleq 2603 and df-v 3175. Use bj-vtoclg1fv 32104 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-vtoclg1f.nf 𝑥𝜓
bj-vtoclg1f.maj (𝑥 = 𝐴 → (𝜑𝜓))
bj-vtoclg1f.min 𝜑
Assertion
Ref Expression
bj-vtoclg1f (𝐴𝑉𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem bj-vtoclg1f
StepHypRef Expression
1 bj-elisset 32056 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 bj-vtoclg1f.nf . . 3 𝑥𝜓
3 bj-vtoclg1f.maj . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 bj-vtoclg1f.min . . 3 𝜑
52, 3, 4bj-exlimmpi 32097 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
61, 5syl 17 1 (𝐴𝑉𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  ∃wex 1695  Ⅎwnf 1699   ∈ wcel 1977 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-clel 2606 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator