Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtoclg1f | Structured version Visualization version GIF version |
Description: Reprove vtoclg1f 3238 from bj-vtoclg1f1 32102. This removes dependency on ax-ext 2590, df-cleq 2603 and df-v 3175. Use bj-vtoclg1fv 32104 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
bj-vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
bj-vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
bj-vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-elisset 32056 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | bj-vtoclg1f.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | bj-vtoclg1f.maj | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
4 | bj-vtoclg1f.min | . . 3 ⊢ 𝜑 | |
5 | 2, 3, 4 | bj-exlimmpi 32097 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∃wex 1695 Ⅎwnf 1699 ∈ wcel 1977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-clel 2606 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |