Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvelimv Structured version   Visualization version   GIF version

Theorem bj-dvelimv 32029
 Description: A version of dvelim 2325 using the "non-free" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-dvelimv.nf 𝑥𝜓
bj-dvelimv.is (𝑧 = 𝑦 → (𝜓𝜑))
Assertion
Ref Expression
bj-dvelimv (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem bj-dvelimv
StepHypRef Expression
1 nfv 1830 . . 3 𝑥
2 bj-dvelimv.nf . . . 4 𝑥𝜓
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜓)
4 bj-dvelimv.is . . 3 (𝑧 = 𝑦 → (𝜓𝜑))
51, 3, 4bj-dvelimdv1 32028 . 2 (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑))
65trud 1484 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195  ∀wal 1473  ⊤wtru 1476  Ⅎwnf 1699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701 This theorem is referenced by:  bj-nfeel2  32030
 Copyright terms: Public domain W3C validator