Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gencbvex2 | Structured version Visualization version GIF version |
Description: Restatement of gencbvex 3223 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) |
Ref | Expression |
---|---|
gencbvex2.1 | ⊢ 𝐴 ∈ V |
gencbvex2.2 | ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) |
gencbvex2.3 | ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) |
gencbvex2.4 | ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
Ref | Expression |
---|---|
gencbvex2 | ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gencbvex2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | gencbvex2.2 | . 2 ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | gencbvex2.3 | . 2 ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | |
4 | gencbvex2.4 | . . 3 ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | |
5 | 3 | biimpac 502 | . . . 4 ⊢ ((𝜒 ∧ 𝐴 = 𝑦) → 𝜃) |
6 | 5 | exlimiv 1845 | . . 3 ⊢ (∃𝑥(𝜒 ∧ 𝐴 = 𝑦) → 𝜃) |
7 | 4, 6 | impbii 198 | . 2 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
8 | 1, 2, 3, 7 | gencbvex 3223 | 1 ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∃wex 1695 ∈ wcel 1977 Vcvv 3173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-11 2021 ax-12 2034 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-v 3175 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |