Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsal | Structured version Visualization version GIF version |
Description: Remove from ceqsal 3205 dependency on ax-ext 2590 (and on df-cleq 2603, df-v 3175, df-clab 2597, df-sb 1868). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ceqsal.1 | ⊢ Ⅎ𝑥𝜓 |
bj-ceqsal.2 | ⊢ 𝐴 ∈ V |
bj-ceqsal.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-ceqsal | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ceqsal.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | bj-ceqsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | bj-ceqsal.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | bj-ceqsalgv 32074 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 Vcvv 3173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-ex 1696 df-nf 1701 df-clel 2606 |
This theorem is referenced by: bj-ceqsalv 32077 |
Copyright terms: Public domain | W3C validator |