Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 1933
 Description: Deduction form of equcom 1932, symmetry of equality. For the versions for classes, see eqcom 2617 and eqcomd 2616. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 1932 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 207 1 (𝜑𝑦 = 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by:  sndisj  4574  fsumcom2  14347  fprodcom2  14553  cusgrafilem2  26008  bj-ssbequ1  31833  bj-nfcsym  32079  cusgrfilem2  40672
 Copyright terms: Public domain W3C validator