MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel12 Structured version   Visualization version   GIF version

Theorem sbcel12 3935
Description: Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel12 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem sbcel12
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3405 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵𝐶[𝐴 / 𝑥]𝐵𝐶))
2 dfsbcq2 3405 . . . . . 6 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2728 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3405 . . . . . 6 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2728 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eleq12d 2682 . . . 4 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 2425 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2755 . . . . . 6 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 2425 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2755 . . . . . 6 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfel 2763 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2737 . . . . . 6 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2737 . . . . . 6 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eleq12d 2682 . . . . 5 (𝑥 = 𝑧 → (𝐵𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbie 2396 . . . 4 ([𝑧 / 𝑥]𝐵𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 3240 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3500 . . . 4 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3500 . . . 4 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eleq12i 2681 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19syl6bbr 277 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
21 sbcex 3412 . . . 4 ([𝐴 / 𝑥]𝐵𝐶𝐴 ∈ V)
2221con3i 149 . . 3 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵𝐶)
23 noel 3878 . . . 4 ¬ 𝐴 / 𝑥𝐵 ∈ ∅
24 csbprc 3932 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
2524eleq2d 2673 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 ∈ ∅))
2623, 25mtbiri 316 . . 3 𝐴 ∈ V → ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2722, 262falsed 365 . 2 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2820, 27pm2.61i 175 1 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195   = wceq 1475  [wsb 1867  wcel 1977  {cab 2596  Vcvv 3173  [wsbc 3402  csb 3499  c0 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-nul 3875
This theorem is referenced by:  sbcnel12g  3937  sbcel1g  3939  sbcel2  3941  sbccsb2  3957  csbmpt12  4934  ixpsnval  7797  fmptdF  28836  csbmpt22g  32353  csbfinxpg  32401  finixpnum  32564
  Copyright terms: Public domain W3C validator