MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel12 Structured version   Unicode version

Theorem sbcel12 3750
Description: Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel12  |-  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C )

Proof of Theorem sbcel12
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3255 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] B  e.  C  <->  [. A  /  x ]. B  e.  C )
)
2 dfsbcq2 3255 . . . . . 6  |-  ( z  =  A  ->  ( [ z  /  x ] y  e.  B  <->  [. A  /  x ]. y  e.  B )
)
32abbidv 2518 . . . . 5  |-  ( z  =  A  ->  { y  |  [ z  /  x ] y  e.  B }  =  { y  |  [. A  /  x ]. y  e.  B } )
4 dfsbcq2 3255 . . . . . 6  |-  ( z  =  A  ->  ( [ z  /  x ] y  e.  C  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2518 . . . . 5  |-  ( z  =  A  ->  { y  |  [ z  /  x ] y  e.  C }  =  { y  |  [. A  /  x ]. y  e.  C } )
63, 5eleq12d 2464 . . . 4  |-  ( z  =  A  ->  ( { y  |  [
z  /  x ]
y  e.  B }  e.  { y  |  [
z  /  x ]
y  e.  C }  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  {
y  |  [. A  /  x ]. y  e.  C } ) )
7 nfs1v 2185 . . . . . . 7  |-  F/ x [ z  /  x ] y  e.  B
87nfab 2548 . . . . . 6  |-  F/_ x { y  |  [
z  /  x ]
y  e.  B }
9 nfs1v 2185 . . . . . . 7  |-  F/ x [ z  /  x ] y  e.  C
109nfab 2548 . . . . . 6  |-  F/_ x { y  |  [
z  /  x ]
y  e.  C }
118, 10nfel 2557 . . . . 5  |-  F/ x { y  |  [
z  /  x ]
y  e.  B }  e.  { y  |  [
z  /  x ]
y  e.  C }
12 sbab 2529 . . . . . 6  |-  ( x  =  z  ->  B  =  { y  |  [
z  /  x ]
y  e.  B }
)
13 sbab 2529 . . . . . 6  |-  ( x  =  z  ->  C  =  { y  |  [
z  /  x ]
y  e.  C }
)
1412, 13eleq12d 2464 . . . . 5  |-  ( x  =  z  ->  ( B  e.  C  <->  { y  |  [ z  /  x ] y  e.  B }  e.  { y  |  [ z  /  x ] y  e.  C } ) )
1511, 14sbie 2153 . . . 4  |-  ( [ z  /  x ] B  e.  C  <->  { y  |  [ z  /  x ] y  e.  B }  e.  { y  |  [ z  /  x ] y  e.  C } )
161, 6, 15vtoclbg 3093 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  e.  C  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  {
y  |  [. A  /  x ]. y  e.  C } ) )
17 df-csb 3349 . . . 4  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
18 df-csb 3349 . . . 4  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
1917, 18eleq12i 2461 . . 3  |-  ( [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  {
y  |  [. A  /  x ]. y  e.  C } )
2016, 19syl6bbr 263 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
21 sbcex 3262 . . . 4  |-  ( [. A  /  x ]. B  e.  C  ->  A  e. 
_V )
2221con3i 135 . . 3  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. B  e.  C
)
23 noel 3715 . . . 4  |-  -.  [_ A  /  x ]_ B  e.  (/)
24 csbprc 3748 . . . . 5  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ C  =  (/) )
2524eleq2d 2452 . . . 4  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  [_ A  /  x ]_ B  e.  (/) ) )
2623, 25mtbiri 301 . . 3  |-  ( -.  A  e.  _V  ->  -. 
[_ A  /  x ]_ B  e.  [_ A  /  x ]_ C )
2722, 262falsed 349 . 2  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
2820, 27pm2.61i 164 1  |-  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    = wceq 1399   [wsb 1747    e. wcel 1826   {cab 2367   _Vcvv 3034   [.wsbc 3252   [_csb 3348   (/)c0 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-in 3396  df-ss 3403  df-nul 3712
This theorem is referenced by:  sbcnel12g  3752  sbcel1g  3754  sbcel2  3756  sbccsb2  3772  csbmpt12  4695  ixpsnval  7391  fmptdF  27635  finixpnum  30203
  Copyright terms: Public domain W3C validator