MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel12 Structured version   Unicode version

Theorem sbcel12 3672
Description: Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel12  |-  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C )

Proof of Theorem sbcel12
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3186 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] B  e.  C  <->  [. A  /  x ]. B  e.  C )
)
2 dfsbcq2 3186 . . . . . 6  |-  ( z  =  A  ->  ( [ z  /  x ] y  e.  B  <->  [. A  /  x ]. y  e.  B )
)
32abbidv 2555 . . . . 5  |-  ( z  =  A  ->  { y  |  [ z  /  x ] y  e.  B }  =  { y  |  [. A  /  x ]. y  e.  B } )
4 dfsbcq2 3186 . . . . . 6  |-  ( z  =  A  ->  ( [ z  /  x ] y  e.  C  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2555 . . . . 5  |-  ( z  =  A  ->  { y  |  [ z  /  x ] y  e.  C }  =  { y  |  [. A  /  x ]. y  e.  C } )
63, 5eleq12d 2509 . . . 4  |-  ( z  =  A  ->  ( { y  |  [
z  /  x ]
y  e.  B }  e.  { y  |  [
z  /  x ]
y  e.  C }  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  {
y  |  [. A  /  x ]. y  e.  C } ) )
7 nfs1v 2149 . . . . . . 7  |-  F/ x [ z  /  x ] y  e.  B
87nfab 2581 . . . . . 6  |-  F/_ x { y  |  [
z  /  x ]
y  e.  B }
9 nfs1v 2149 . . . . . . 7  |-  F/ x [ z  /  x ] y  e.  C
109nfab 2581 . . . . . 6  |-  F/_ x { y  |  [
z  /  x ]
y  e.  C }
118, 10nfel 2585 . . . . 5  |-  F/ x { y  |  [
z  /  x ]
y  e.  B }  e.  { y  |  [
z  /  x ]
y  e.  C }
12 sbab 2563 . . . . . 6  |-  ( x  =  z  ->  B  =  { y  |  [
z  /  x ]
y  e.  B }
)
13 sbab 2563 . . . . . 6  |-  ( x  =  z  ->  C  =  { y  |  [
z  /  x ]
y  e.  C }
)
1412, 13eleq12d 2509 . . . . 5  |-  ( x  =  z  ->  ( B  e.  C  <->  { y  |  [ z  /  x ] y  e.  B }  e.  { y  |  [ z  /  x ] y  e.  C } ) )
1511, 14sbie 2106 . . . 4  |-  ( [ z  /  x ] B  e.  C  <->  { y  |  [ z  /  x ] y  e.  B }  e.  { y  |  [ z  /  x ] y  e.  C } )
161, 6, 15vtoclbg 3028 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  e.  C  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  {
y  |  [. A  /  x ]. y  e.  C } ) )
17 df-csb 3286 . . . 4  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
18 df-csb 3286 . . . 4  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
1917, 18eleq12i 2506 . . 3  |-  ( [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  {
y  |  [. A  /  x ]. y  e.  C } )
2016, 19syl6bbr 263 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
21 sbcex 3193 . . . 4  |-  ( [. A  /  x ]. B  e.  C  ->  A  e. 
_V )
2221con3i 135 . . 3  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. B  e.  C
)
23 noel 3638 . . . 4  |-  -.  [_ A  /  x ]_ B  e.  (/)
24 csbprc 3670 . . . . . 6  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ C  =  (/) )
2524eleq2d 2508 . . . . 5  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  [_ A  /  x ]_ B  e.  (/) ) )
2625notbid 294 . . . 4  |-  ( -.  A  e.  _V  ->  ( -.  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  -. 
[_ A  /  x ]_ B  e.  (/) ) )
2723, 26mpbiri 233 . . 3  |-  ( -.  A  e.  _V  ->  -. 
[_ A  /  x ]_ B  e.  [_ A  /  x ]_ C )
2822, 272falsed 351 . 2  |-  ( -.  A  e.  _V  ->  (
[. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
2920, 28pm2.61i 164 1  |-  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    = wceq 1364   [wsb 1705    e. wcel 1761   {cab 2427   _Vcvv 2970   [.wsbc 3183   [_csb 3285   (/)c0 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-in 3332  df-ss 3339  df-nul 3635
This theorem is referenced by:  sbcnel12g  3675  sbcel1g  3678  sbcel2  3680  sbccsb2  3700  ixpsnval  7262  fmptdF  25891  finixpnum  28323
  Copyright terms: Public domain W3C validator