![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcrii | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcri.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcrii | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcr 2743 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑧 ∈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | 3 | nf5ri 2053 | . 2 ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
5 | 4 | hblem 2718 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 Ⅎwnf 1699 ∈ wcel 1977 Ⅎwnfc 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-cleq 2603 df-clel 2606 df-nfc 2740 |
This theorem is referenced by: nfcri 2745 cleqf 2776 abeq2f 2778 bnj1230 30127 bnj1000 30265 bnj1204 30334 bnj1307 30345 bnj1311 30346 bnj1398 30356 bnj1466 30375 bnj1467 30376 bnj1523 30393 |
Copyright terms: Public domain | W3C validator |