Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvelimdv Structured version   Visualization version   GIF version

Theorem bj-dvelimdv 32027
Description: Deduction form of dvelim 2325 with DV conditions. Typically, 𝑧 is a fresh variable used for the implicit substitution hypothesis that results in 𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as 𝜓(𝑥, 𝑧)). So the theorem says that if x is effectively free in 𝜓(𝑥, 𝑧), then if x and y are not the same variable, then 𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context 𝜑.

One can weakend the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use non-freeness hypotheses instead of DV conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV(z,x) since in the proof nfv 1830 can be replaced with nfal 2139 followed by nfn 1768.

Remark: nfald 2151 uses ax-11 2021; it might be possible to inline and use ax11w 1994 instead, but there is still a use via 19.12 2150 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)

Hypotheses
Ref Expression
bj-dvelimdv.nf 𝑥𝜑
bj-dvelimdv.nf1 (𝜑 → Ⅎ𝑥𝜒)
bj-dvelimdv.is (𝑧 = 𝑦 → (𝜒𝜓))
Assertion
Ref Expression
bj-dvelimdv ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem bj-dvelimdv
StepHypRef Expression
1 bj-dvelimdv.is . . . 4 (𝑧 = 𝑦 → (𝜒𝜓))
21equsalvw 1918 . . 3 (∀𝑧(𝑧 = 𝑦𝜒) ↔ 𝜓)
32bicomi 213 . 2 (𝜓 ↔ ∀𝑧(𝑧 = 𝑦𝜒))
4 nfv 1830 . . . 4 𝑧𝜑
5 nfv 1830 . . . 4 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
64, 5nfan 1816 . . 3 𝑧(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
7 nfeqf2 2285 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
87adantl 481 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦)
9 bj-dvelimdv.nf1 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
109adantr 480 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜒)
118, 10nfimd 1812 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑧 = 𝑦𝜒))
126, 11nfald 2151 . 2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑧(𝑧 = 𝑦𝜒))
133, 12nfxfrd 1772 1 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473  wnf 1699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701
This theorem is referenced by:  bj-axc14nf  32031
  Copyright terms: Public domain W3C validator