Home Metamath Proof ExplorerTheorem List (p. 352 of 424) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27159) Hilbert Space Explorer (27160-28684) Users' Mathboxes (28685-42360)

Theorem List for Metamath Proof Explorer - 35101-35200   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremtendoi2 35101* Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))

Theoremtendoicl 35102* Closure of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)

Theoremtendoipl 35103* Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝐵 = (Base‘𝐾)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)

Theoremtendoipl2 35104* Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝐵 = (Base‘𝐾)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = 𝑂)

Theoremerngfset 35105* The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑉 → (EDRing‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑠𝑡))⟩}))

Theoremerngset 35106* The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡))⟩})

Theoremerngbase 35107 The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom 𝑊). TODO: the .t hypothesis isn't used. (Also look at others.) (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   𝐶 = (Base‘𝐷)       ((𝐾𝑉𝑊𝐻) → 𝐶 = 𝐸)

Theoremerngfplus 35108* Ring addition operation. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       ((𝐾𝑉𝑊𝐻) → + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))

Theoremerngplus 35109* Ring addition operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))

Theoremerngplus2 35110 Ring addition operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))

Theoremerngfmul 35111* Ring multiplication operation. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    · = (.r𝐷)       ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡)))

Theoremerngmul 35112 Ring addition operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    · = (.r𝐷)       (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 · 𝑉) = (𝑈𝑉))

Theoremerngfset-rN 35113* The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑉 → (EDRingR𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}))

Theoremerngset-rN 35114* The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})

Theoremerngbase-rN 35115 The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom 𝑊). (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &   𝐶 = (Base‘𝐷)       ((𝐾𝑉𝑊𝐻) → 𝐶 = 𝐸)

Theoremerngfplus-rN 35116* Ring addition operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    + = (+g𝐷)       ((𝐾𝑉𝑊𝐻) → + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))

Theoremerngplus-rN 35117* Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))

Theoremerngplus2-rN 35118 Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))

Theoremerngfmul-rN 35119* Ring multiplication operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    · = (.r𝐷)       ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)))

Theoremerngmul-rN 35120 Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    · = (.r𝐷)       (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 · 𝑉) = (𝑉𝑈))

Theoremcdlemh1 35121 Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))

Theoremcdlemh2 35122 Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 16-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))    &    0 = (0.‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 𝑊) = 0 )

Theoremcdlemh 35123 Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))

Theoremcdlemi1 35124 Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))

Theoremcdlemi2 35125 Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))

Theoremcdlemi 35126 Lemma I of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑆 = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = 𝑆)

Theoremcdlemj1 35127 Part of proof of Lemma J of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈)‘𝑝) = ((𝑉)‘𝑝))

Theoremcdlemj2 35128 Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑝. (Contributed by NM, 20-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅))) → (𝑈) = (𝑉))

Theoremcdlemj3 35129 Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑔. (Contributed by NM, 20-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))

Theoremtendocan 35130 Cancellation law: if the values of two trace-preserving endormorphisms are equal, so are the endormorphisms. Lemma J of [Crawley] p. 118. (Contributed by NM, 21-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑉)

Theoremtendoid0 35131* A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))

Theoremtendo0mul 35132* Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 1-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑂𝑈) = 𝑂)

Theoremtendo0mulr 35133* Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈𝑂) = 𝑂)

Theoremtendo1ne0 35134* The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)

Theoremtendoconid 35135* The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → (𝑈𝑉) ≠ 𝑂)

Theoremtendotr 35136* The trace of the value of a nonzero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))

Theoremcdlemk1 35137 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃 (𝑁𝑃)) = ((𝐹𝑃) (𝑅𝐹)))

Theoremcdlemk2 35138 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝑅‘(𝐺𝐹))))

Theoremcdlemk3 35139 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝐹𝑃) (𝑅𝐹)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐹𝑃))

Theoremcdlemk4 35140 Part of proof of Lemma K of [Crawley] p. 118, last line. We use 𝑋 for their h, since 𝐻 is already used. (Contributed by NM, 24-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))

Theoremcdlemk5a 35141 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝐹𝑃) (𝑅𝐹)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))

Theoremcdlemk5 35142 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 25-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑃 (𝑁𝑃)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))

Theoremcdlemk6 35143 Part of proof of Lemma K of [Crawley] p. 118. Apply dalaw 34190. (Contributed by NM, 25-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)))) → ((𝑃 (𝐺𝑃)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) ((((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐹)) (𝑁𝑃)))))

Theoremcdlemk8 35144 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 26-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑋𝑃)) = ((𝐺𝑃) (𝑅‘(𝑋𝐺))))

Theoremcdlemk9 35145 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 29-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝑋𝑃)) 𝑊) = (𝑅‘(𝑋𝐺)))

Theoremcdlemk9bN 35146 Part of proof of Lemma K of [Crawley] p. 118. TODO: is this needed? If so, shorten with cdlemk9 35145 if that one is also needed. (Contributed by NM, 28-Jun-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝑋𝑃)) 𝑊) = (𝑅‘(𝐺𝑋)))

Theoremcdlemki 35147* Part of proof of Lemma K of [Crawley] p. 118. TODO: Eliminate and put into cdlemksel 35151. (Contributed by NM, 25-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝐼 = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝐼𝑇)

Theoremcdlemkvcl 35148 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 27-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝑉𝐵)

Theoremcdlemk10 35149 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 29-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑉 (𝑅‘(𝑋𝐺)))

Theoremcdlemksv 35150* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       (𝐺𝑇 → (𝑆𝐺) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))

Theoremcdlemksel 35151* Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma(p) function to be a translation. TODO: combine cdlemki 35147? (Contributed by NM, 26-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑆𝐺) ∈ 𝑇)

Theoremcdlemksat 35152* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 27-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) ∈ 𝐴)

Theoremcdlemksv2 35153* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function 𝑆 at the fixed 𝑃 parameter. (Contributed by NM, 26-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))

Theoremcdlemk7 35154* Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119. (Contributed by NM, 27-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) 𝑉))

Theoremcdlemk11 35155* Part of proof of Lemma K of [Crawley] p. 118. Eq. 3, line 8, p. 119. (Contributed by NM, 29-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))

Theoremcdlemk12 35156* Part of proof of Lemma K of [Crawley] p. 118. Eq. 4, line 10, p. 119. (Contributed by NM, 30-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))

Theoremcdlemkoatnle 35157* Utility lemma. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑂𝑃) ∈ 𝐴 ∧ ¬ (𝑂𝑃) 𝑊))

Theoremcdlemk13 35158* Part of proof of Lemma K of [Crawley] p. 118. Line 13 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) = ((𝑃 (𝑅𝐷)) ((𝑁𝑃) (𝑅‘(𝐷𝐹)))))

Theoremcdlemkole 35159* Utility lemma. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) (𝑃 (𝑅𝐷)))

Theoremcdlemk14 35160* Part of proof of Lemma K of [Crawley] p. 118. Line 19 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) ((𝑂𝑃) (𝑅‘(𝐹𝐷))))

Theoremcdlemk15 35161* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) ((𝑃 (𝑅𝐹)) ((𝑂𝑃) (𝑅‘(𝐹𝐷)))))

Theoremcdlemk16a 35162* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) 𝑊))

Theoremcdlemk16 35163* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (((𝑃 (𝑅𝐹)) ((𝑂𝑃) (𝑅‘(𝐹𝐷)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐹)) ((𝑂𝑃) (𝑅‘(𝐹𝐷)))) 𝑊))

Theoremcdlemk17 35164* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) = ((𝑃 (𝑅𝐹)) ((𝑂𝑃) (𝑅‘(𝐹𝐷)))))

Theoremcdlemk1u 35165* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑃 (𝑂𝑃)) ((𝐷𝑃) (𝑅𝐷)))

Theoremcdlemk5auN 35166* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝑇𝐺𝑇𝑋𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝐷𝑃) (𝑅𝐷)) ((𝐷𝑃) (𝑅‘(𝐺𝐷)))) ((𝑋𝑃) (𝑅‘(𝑋𝐷))))

Theoremcdlemk5u 35167* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 4-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑃 (𝑂𝑃)) ((𝐺𝑃) (𝑅‘(𝐺𝐷)))) ((𝑋𝑃) (𝑅‘(𝑋𝐷))))

Theoremcdlemk6u 35168* Part of proof of Lemma K of [Crawley] p. 118. Apply dalaw 34190. (Contributed by NM, 4-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑃 (𝐺𝑃)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) ((((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐷)) (𝑅‘(𝑋𝐷)))) (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐷)) (𝑂𝑃)))))

Theoremcdlemkj 35169* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑍 = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑍𝑇)

TheoremcdlemkuvN 35170* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma1 (p) function 𝑈. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       (𝐺𝑇 → (𝑈𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))))

Theoremcdlemkuel 35171* Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma1 (p) function to be a translation. TODO: combine cdlemkj 35169? (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑈𝐺) ∈ 𝑇)

Theoremcdlemkuat 35172* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 4-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)

Theoremcdlemkuv2 35173* Part of proof of Lemma K of [Crawley] p. 118. Line 16 on p. 119 for i = 1, where sigma1 (p) is 𝑈, f1 is 𝐷, and k1 is 𝑂. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))

Theoremcdlemk18 35174* Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119. 𝑁, 𝑈, 𝑂, 𝐷 are k, sigma1 (p), k1, f1. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) = ((𝑈𝐹)‘𝑃))

Theoremcdlemk19 35175* Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119. 𝑁, 𝑈, 𝑂, 𝐷 are k, sigma1 (p), k1, f1. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑈𝐹) = 𝑁)

Theoremcdlemk7u 35176* Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119 for the sigma1 case. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐷)) (𝑅‘(𝑋𝐷))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) (((𝑈𝑋)‘𝑃) 𝑉))

Theoremcdlemk11u 35177* Part of proof of Lemma K of [Crawley] p. 118. Line 17, p. 119, showing Eq. 3 (line 8, p. 119) for the sigma1 (𝑈) case. (Contributed by NM, 4-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐷)) (𝑅‘(𝑋𝐷))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))

Theoremcdlemk12u 35178* Part of proof of Lemma K of [Crawley] p. 118. Line 18, p. 119, showing Eq. 4 (line 10, p. 119) for the sigma1 (𝑈) case. (Contributed by NM, 4-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))

Theoremcdlemk21N 35179* Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=0 and j=1. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑆𝐺)‘𝑃) = ((𝑈𝐺)‘𝑃))

Theoremcdlemk20 35180* Part of proof of Lemma K of [Crawley] p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be fi. Our 𝐷, 𝐶, 𝑂, 𝑄, 𝑈, 𝑉 represent their f1, f2, k1, k2, sigma1, sigma2. (Contributed by NM, 5-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))    &   𝑄 = (𝑆𝐶)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑈𝐶)‘𝑃) = (𝑄𝑃))

Theoremcdlemkoatnle-2N 35181* Utility lemma. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑄𝑃) ∈ 𝐴 ∧ ¬ (𝑄𝑃) 𝑊))

Theoremcdlemk13-2N 35182* Part of proof of Lemma K of [Crawley] p. 118. Line 13 on p. 119. 𝑄, 𝐶 are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑄𝑃) = ((𝑃 (𝑅𝐶)) ((𝑁𝑃) (𝑅‘(𝐶𝐹)))))

Theoremcdlemkole-2N 35183* Utility lemma. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑄𝑃) (𝑃 (𝑅𝐶)))

Theoremcdlemk14-2N 35184* Part of proof of Lemma K of [Crawley] p. 118. Line 19 on p. 119. 𝑄, 𝐶 are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑃) ((𝑄𝑃) (𝑅‘(𝐹𝐶))))

Theoremcdlemk15-2N 35185* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119. 𝑄, 𝐶 are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑃) ((𝑃 (𝑅𝐹)) ((𝑄𝑃) (𝑅‘(𝐹𝐶)))))

Theoremcdlemk16-2N 35186* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝑃 (𝑅𝐹)) ((𝑄𝑃) (𝑅‘(𝐹𝐶)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐹)) ((𝑄𝑃) (𝑅‘(𝐹𝐶)))) 𝑊))

Theoremcdlemk17-2N 35187* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119. 𝑄, 𝐶 are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑃) = ((𝑃 (𝑅𝐹)) ((𝑄𝑃) (𝑅‘(𝐹𝐶)))))

Theoremcdlemkj-2N 35188* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑌 = (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐶)))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑌𝑇)

Theoremcdlemkuv-2N 35189* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma2 (p) function, given 𝑉. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))       (𝐺𝑇 → (𝑉𝐺) = (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐶))))))

Theoremcdlemkuel-2N 35190* Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma2 (p) function to be a translation. TODO: combine cdlemkj 35169? (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑉𝐺) ∈ 𝑇)

Theoremcdlemkuv2-2 35191* Part of proof of Lemma K of [Crawley] p. 118. Line 16 on p. 119 for i = 2, where sigma2 (p) is 𝑉, f2 is 𝐶, and k2 is 𝑄. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐶) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐶)))))

Theoremcdlemk18-2N 35192* Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119. 𝑁, 𝑉, 𝑄, 𝐶 are k, sigma2 (p), k2, f2. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑃) = ((𝑉𝐹)‘𝑃))

Theoremcdlemk19-2N 35193* Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119. 𝑁, 𝑉, 𝑄, 𝐶 are k, sigma2 (p), k2, f2. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑉𝐹) = 𝑁)

Theoremcdlemk7u-2N 35194* Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119 for the sigma2 case. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))    &   𝑍 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐶)) (𝑅‘(𝑋𝐶))))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐺)‘𝑃) (((𝑉𝑋)‘𝑃) 𝑍))

Theoremcdlemk11u-2N 35195* Part of proof of Lemma K of [Crawley] p. 118. Line 17, p. 119, showing Eq. 3 (line 8, p. 119) for the sigma2 (𝑍) case. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))    &   𝑍 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐶)) (𝑅‘(𝑋𝐶))))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐺)‘𝑃) (((𝑉𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))

Theoremcdlemk12u-2N 35196* Part of proof of Lemma K of [Crawley] p. 118. Line 18, p. 119, showing Eq. 4 (line 10, p. 119) for the sigma2 (𝑉) case. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑉𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))

Theoremcdlemk21-2N 35197* Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=0 and j=2. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑆𝐺)‘𝑃) = ((𝑉𝐺)‘𝑃))

Theoremcdlemk20-2N 35198* Part of proof of Lemma K of [Crawley] p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be fi. Our 𝐷, 𝐶, 𝑂, 𝑄, 𝑈, 𝑉 represent their f1, f2, k1, k2, sigma1, sigma2. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))    &   𝑂 = (𝑆𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐶𝑇𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐷)‘𝑃) = (𝑂𝑃))

Theoremcdlemk22 35199* Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=1 and j=2. (Contributed by NM, 5-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑄 = (𝑆𝐶)    &   𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))    &   𝑂 = (𝑆𝐷)    &   𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) = ((𝑉𝐺)‘𝑃))

Theoremcdlemk30 35200* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 17-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝑏𝑇𝑁𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑆𝑏)‘𝑃) = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
 Copyright terms: Public domain < Previous  Next >