Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk17-2N Structured version   Visualization version   GIF version

Theorem cdlemk17-2N 35187
 Description: Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119. 𝑄, 𝐶 are k2, f2. (Contributed by NM, 1-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b 𝐵 = (Base‘𝐾)
cdlemk2.l = (le‘𝐾)
cdlemk2.j = (join‘𝐾)
cdlemk2.m = (meet‘𝐾)
cdlemk2.a 𝐴 = (Atoms‘𝐾)
cdlemk2.h 𝐻 = (LHyp‘𝐾)
cdlemk2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk2.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk2.q 𝑄 = (𝑆𝐶)
Assertion
Ref Expression
cdlemk17-2N (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑃) = ((𝑃 (𝑅𝐹)) ((𝑄𝑃) (𝑅‘(𝐹𝐶)))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐶,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑖)   𝑄(𝑓,𝑖)   𝑆(𝑓,𝑖)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)

Proof of Theorem cdlemk17-2N
StepHypRef Expression
1 simp11 1084 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
2 simp12 1085 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
31, 2jca 553 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp21 1087 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
5 simp22 1088 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶𝑇)
6 simp23 1089 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑁𝑇)
7 simp33 1092 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp13 1086 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐹) = (𝑅𝑁))
9 simp32l 1179 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
10 simp32r 1180 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶 ≠ ( I ↾ 𝐵))
11 simp31 1090 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐶) ≠ (𝑅𝐹))
12 cdlemk2.b . . 3 𝐵 = (Base‘𝐾)
13 cdlemk2.l . . 3 = (le‘𝐾)
14 cdlemk2.j . . 3 = (join‘𝐾)
15 cdlemk2.m . . 3 = (meet‘𝐾)
16 cdlemk2.a . . 3 𝐴 = (Atoms‘𝐾)
17 cdlemk2.h . . 3 𝐻 = (LHyp‘𝐾)
18 cdlemk2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
19 cdlemk2.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
20 cdlemk2.s . . 3 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
21 cdlemk2.q . . 3 𝑄 = (𝑆𝐶)
2212, 13, 14, 15, 16, 17, 18, 19, 20, 21cdlemk17 35164 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐶𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐶) ≠ (𝑅𝐹))) → (𝑁𝑃) = ((𝑃 (𝑅𝐹)) ((𝑄𝑃) (𝑅‘(𝐹𝐶)))))
233, 4, 5, 6, 7, 8, 9, 10, 11, 22syl333anc 1350 1 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐶𝑇𝑁𝑇) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑃) = ((𝑃 (𝑅𝐹)) ((𝑄𝑃) (𝑅‘(𝐹𝐶)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583   ↦ cmpt 4643   I cid 4948  ◡ccnv 5037   ↾ cres 5040   ∘ ccom 5042  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator