Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk18-2N | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119. 𝑁, 𝑉, 𝑄, 𝐶 are k, sigma2 (p), k2, f2. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemk2.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk2.l | ⊢ ≤ = (le‘𝐾) |
cdlemk2.j | ⊢ ∨ = (join‘𝐾) |
cdlemk2.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk2.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk2.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk2.q | ⊢ 𝑄 = (𝑆‘𝐶) |
cdlemk2.v | ⊢ 𝑉 = (𝑑 ∈ 𝑇 ↦ (℩𝑘 ∈ 𝑇 (𝑘‘𝑃) = ((𝑃 ∨ (𝑅‘𝑑)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑑 ∘ ◡𝐶)))))) |
Ref | Expression |
---|---|
cdlemk18-2N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑁‘𝑃) = ((𝑉‘𝐹)‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1084 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐾 ∈ HL) | |
2 | simp12 1085 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑊 ∈ 𝐻) | |
3 | 1, 2 | jca 553 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | simp21 1087 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ∈ 𝑇) | |
5 | simp22 1088 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐶 ∈ 𝑇) | |
6 | simp23 1089 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑁 ∈ 𝑇) | |
7 | simp33 1092 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
8 | simp13 1086 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐹) = (𝑅‘𝑁)) | |
9 | simp32l 1179 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵)) | |
10 | simp32r 1180 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐶 ≠ ( I ↾ 𝐵)) | |
11 | simp31 1090 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑅‘𝐶) ≠ (𝑅‘𝐹)) | |
12 | cdlemk2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
13 | cdlemk2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
14 | cdlemk2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
15 | cdlemk2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
16 | cdlemk2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
17 | cdlemk2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
18 | cdlemk2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
19 | cdlemk2.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
20 | cdlemk2.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
21 | cdlemk2.q | . . 3 ⊢ 𝑄 = (𝑆‘𝐶) | |
22 | cdlemk2.v | . . 3 ⊢ 𝑉 = (𝑑 ∈ 𝑇 ↦ (℩𝑘 ∈ 𝑇 (𝑘‘𝑃) = ((𝑃 ∨ (𝑅‘𝑑)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑑 ∘ ◡𝐶)))))) | |
23 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | cdlemk18 35174 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹))) → (𝑁‘𝑃) = ((𝑉‘𝐹)‘𝑃)) |
24 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 23 | syl333anc 1350 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑁‘𝑃) = ((𝑉‘𝐹)‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 ↦ cmpt 4643 I cid 4948 ◡ccnv 5037 ↾ cres 5040 ∘ ccom 5042 ‘cfv 5804 ℩crio 6510 (class class class)co 6549 Basecbs 15695 lecple 15775 joincjn 16767 meetcmee 16768 Atomscatm 33568 HLchlt 33655 LHypclh 34288 LTrncltrn 34405 trLctrl 34463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-riotaBAD 33257 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-undef 7286 df-map 7746 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-llines 33802 df-lplanes 33803 df-lvols 33804 df-lines 33805 df-psubsp 33807 df-pmap 33808 df-padd 34100 df-lhyp 34292 df-laut 34293 df-ldil 34408 df-ltrn 34409 df-trl 34464 |
This theorem is referenced by: cdlemk18-3N 35206 |
Copyright terms: Public domain | W3C validator |