Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoipl2 Structured version   Visualization version   GIF version

Theorem tendoipl2 35104
 Description: Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHyp‘𝐾)
tendoicl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoicl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoicl.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.b 𝐵 = (Base‘𝐾)
tendoi.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendoi.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoipl2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = 𝑂)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠   𝐵,𝑓   𝑡,𝐸   𝑓,𝐻   𝑓,𝐾   𝑡,𝑓,𝑠,𝑇   𝑡,𝑊
Allowed substitution hints:   𝐵(𝑡,𝑠)   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑠)   𝐼(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑠)   𝑂(𝑡,𝑓,𝑠)

Proof of Theorem tendoipl2
StepHypRef Expression
1 tendoicl.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendoicl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendoicl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 tendoicl.i . . . 4 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
51, 2, 3, 4tendoicl 35102 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
6 tendoi.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
71, 2, 3, 6tendoplcom 35088 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐼𝑆) ∈ 𝐸) → (𝑆𝑃(𝐼𝑆)) = ((𝐼𝑆)𝑃𝑆))
85, 7mpd3an3 1417 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = ((𝐼𝑆)𝑃𝑆))
9 tendoi.b . . 3 𝐵 = (Base‘𝐾)
10 tendoi.o . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
111, 2, 3, 4, 9, 6, 10tendoipl 35103 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
128, 11eqtrd 2644 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = 𝑂)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ↦ cmpt 4643   I cid 4948  ◡ccnv 5037   ↾ cres 5040   ∘ ccom 5042  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Basecbs 15695  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061 This theorem is referenced by:  dihjatcclem4  35728
 Copyright terms: Public domain W3C validator