Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoipl2 Structured version   Unicode version

Theorem tendoipl2 35471
Description: Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
tendoicl.h  |-  H  =  ( LHyp `  K
)
tendoicl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoicl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoicl.i  |-  I  =  ( s  e.  E  |->  ( f  e.  T  |->  `' ( s `  f ) ) )
tendoi.b  |-  B  =  ( Base `  K
)
tendoi.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
tendoi.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendoipl2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S P ( I `  S ) )  =  O )
Distinct variable groups:    E, s    f, s, T    f, W, s    B, f    t, E   
f, H    f, K    t, f, s, T    t, W
Allowed substitution hints:    B( t, s)    P( t, f, s)    S( t, f, s)    E( f)    H( t, s)    I( t, f, s)    K( t, s)    O( t, f, s)

Proof of Theorem tendoipl2
StepHypRef Expression
1 tendoicl.h . . . 4  |-  H  =  ( LHyp `  K
)
2 tendoicl.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 tendoicl.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 tendoicl.i . . . 4  |-  I  =  ( s  e.  E  |->  ( f  e.  T  |->  `' ( s `  f ) ) )
51, 2, 3, 4tendoicl 35469 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( I `  S )  e.  E
)
6 tendoi.p . . . 4  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
71, 2, 3, 6tendoplcom 35455 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( I `  S
)  e.  E )  ->  ( S P ( I `  S
) )  =  ( ( I `  S
) P S ) )
85, 7mpd3an3 1320 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S P ( I `  S ) )  =  ( ( I `  S ) P S ) )
9 tendoi.b . . 3  |-  B  =  ( Base `  K
)
10 tendoi.o . . 3  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
111, 2, 3, 4, 9, 6, 10tendoipl 35470 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  =  O )
128, 11eqtrd 2503 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S P ( I `  S ) )  =  O )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    |-> cmpt 4500    _I cid 4785   `'ccnv 4993    |` cres 4996    o. ccom 4998   ` cfv 5581  (class class class)co 6277    |-> cmpt2 6279   Basecbs 14481   HLchlt 34024   LHypclh 34657   LTrncltrn 34774   TEndoctendo 35425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-riotaBAD 33633
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6776  df-2nd 6777  df-undef 6994  df-map 7414  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-p1 15518  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-llines 34171  df-lplanes 34172  df-lvols 34173  df-lines 34174  df-psubsp 34176  df-pmap 34177  df-padd 34469  df-lhyp 34661  df-laut 34662  df-ldil 34777  df-ltrn 34778  df-trl 34832  df-tendo 35428
This theorem is referenced by:  dihjatcclem4  36095
  Copyright terms: Public domain W3C validator