Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngfplus-rN | Structured version Visualization version GIF version |
Description: Ring addition operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
erngset.h-r | ⊢ 𝐻 = (LHyp‘𝐾) |
erngset.t-r | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erngset.e-r | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erngset.d-r | ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) |
erng.p-r | ⊢ + = (+g‘𝐷) |
Ref | Expression |
---|---|
erngfplus-rN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erngset.h-r | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erngset.t-r | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erngset.e-r | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | erngset.d-r | . . . 4 ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | erngset-rN 35114 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {〈(Base‘ndx), 𝐸〉, 〈(+g‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))〉}) |
6 | 5 | fveq2d 6107 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (+g‘{〈(Base‘ndx), 𝐸〉, 〈(+g‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))〉})) |
7 | erng.p-r | . 2 ⊢ + = (+g‘𝐷) | |
8 | fvex 6113 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) ∈ V | |
9 | 3, 8 | eqeltri 2684 | . . . 4 ⊢ 𝐸 ∈ V |
10 | 9, 9 | mpt2ex 7136 | . . 3 ⊢ (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ∈ V |
11 | eqid 2610 | . . . 4 ⊢ {〈(Base‘ndx), 𝐸〉, 〈(+g‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))〉} = {〈(Base‘ndx), 𝐸〉, 〈(+g‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))〉} | |
12 | 11 | rngplusg 15825 | . . 3 ⊢ ((𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ∈ V → (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (+g‘{〈(Base‘ndx), 𝐸〉, 〈(+g‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))〉})) |
13 | 10, 12 | ax-mp 5 | . 2 ⊢ (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (+g‘{〈(Base‘ndx), 𝐸〉, 〈(+g‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))〉}) |
14 | 6, 7, 13 | 3eqtr4g 2669 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {ctp 4129 〈cop 4131 ↦ cmpt 4643 ∘ ccom 5042 ‘cfv 5804 ↦ cmpt2 6551 ndxcnx 15692 Basecbs 15695 +gcplusg 15768 .rcmulr 15769 LHypclh 34288 LTrncltrn 34405 TEndoctendo 35058 EDRingRcedring-rN 35060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-plusg 15781 df-mulr 15782 df-edring-rN 35062 |
This theorem is referenced by: erngplus-rN 35117 erngdvlem1-rN 35302 erngdvlem2-rN 35303 erngdvlem3-rN 35304 erngdvlem4-rN 35305 |
Copyright terms: Public domain | W3C validator |