Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngfplus-rN Structured version   Visualization version   GIF version

Theorem erngfplus-rN 35116
 Description: Ring addition operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
erngset.h-r 𝐻 = (LHyp‘𝐾)
erngset.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngset.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngset.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
erng.p-r + = (+g𝐷)
Assertion
Ref Expression
erngfplus-rN ((𝐾𝑉𝑊𝐻) → + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
Distinct variable groups:   𝑓,𝑠,𝑡,𝐾   𝑓,𝑊,𝑠,𝑡   𝐸,𝑠,𝑡
Allowed substitution hints:   𝐷(𝑡,𝑓,𝑠)   + (𝑡,𝑓,𝑠)   𝑇(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem erngfplus-rN
StepHypRef Expression
1 erngset.h-r . . . 4 𝐻 = (LHyp‘𝐾)
2 erngset.t-r . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngset.e-r . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 erngset.d-r . . . 4 𝐷 = ((EDRingR𝐾)‘𝑊)
51, 2, 3, 4erngset-rN 35114 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
65fveq2d 6107 . 2 ((𝐾𝑉𝑊𝐻) → (+g𝐷) = (+g‘{⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩}))
7 erng.p-r . 2 + = (+g𝐷)
8 fvex 6113 . . . . 5 ((TEndo‘𝐾)‘𝑊) ∈ V
93, 8eqeltri 2684 . . . 4 𝐸 ∈ V
109, 9mpt2ex 7136 . . 3 (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) ∈ V
11 eqid 2610 . . . 4 {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩} = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩}
1211rngplusg 15825 . . 3 ((𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) ∈ V → (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (+g‘{⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩}))
1310, 12ax-mp 5 . 2 (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))) = (+g‘{⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
146, 7, 133eqtr4g 2669 1 ((𝐾𝑉𝑊𝐻) → + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  {ctp 4129  ⟨cop 4131   ↦ cmpt 4643   ∘ ccom 5042  ‘cfv 5804   ↦ cmpt2 6551  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  EDRingRcedring-rN 35060 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-edring-rN 35062 This theorem is referenced by:  erngplus-rN  35117  erngdvlem1-rN  35302  erngdvlem2-rN  35303  erngdvlem3-rN  35304  erngdvlem4-rN  35305
 Copyright terms: Public domain W3C validator