HomeHome Metamath Proof Explorer
Theorem List (p. 352 of 411)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26652)
  Hilbert Space Explorer  Hilbert Space Explorer
(26653-28175)
  Users' Mathboxes  Users' Mathboxes
(28176-41046)
 

Theorem List for Metamath Proof Explorer - 35101-35200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdochexmidlem3 35101 Lemma for dochexmid 35107. Use atom exchange lsatexch1 32683 to swap  p and  q. (Contributed by NM, 14-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  p  e.  A )   &    |-  ( ph  ->  q  e.  A )   &    |-  ( ph  ->  r  e.  A )   &    |-  ( ph  ->  q  C_  (  ._|_  `  X ) )   &    |-  ( ph  ->  r  C_  X )   &    |-  ( ph  ->  q  C_  ( r  .(+)  p ) )   =>    |-  ( ph  ->  p  C_  ( X  .(+)  (  ._|_  `  X ) ) )
 
Theoremdochexmidlem4 35102 Lemma for dochexmid 35107. (Contributed by NM, 15-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  p  e.  A )   &    |-  ( ph  ->  q  e.  A )   &    |-  .0.  =  ( 0g `  U )   &    |-  M  =  ( X  .(+) 
 p )   &    |-  ( ph  ->  X  =/=  {  .0.  }
 )   &    |-  ( ph  ->  q  C_  ( (  ._|_  `  X )  i^i  M ) )   =>    |-  ( ph  ->  p  C_  ( X  .(+)  (  ._|_  `  X ) ) )
 
Theoremdochexmidlem5 35103 Lemma for dochexmid 35107. (Contributed by NM, 15-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  p  e.  A )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  M  =  ( X  .(+)  p )   &    |-  ( ph  ->  X  =/=  {  .0.  } )   &    |-  ( ph  ->  -.  p  C_  ( X  .(+) 
 (  ._|_  `  X )
 ) )   =>    |-  ( ph  ->  (
 (  ._|_  `  X )  i^i  M )  =  {  .0.  } )
 
Theoremdochexmidlem6 35104 Lemma for dochexmid 35107. (Contributed by NM, 15-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  p  e.  A )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  M  =  ( X  .(+)  p )   &    |-  ( ph  ->  X  =/=  {  .0.  } )   &    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  X ) )  =  X )   &    |-  ( ph  ->  -.  p  C_  ( X  .(+)  (  ._|_  `  X ) ) )   =>    |-  ( ph  ->  M  =  X )
 
Theoremdochexmidlem7 35105 Lemma for dochexmid 35107. Contradict dochexmidlem6 35104. (Contributed by NM, 15-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  p  e.  A )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  M  =  ( X  .(+)  p )   &    |-  ( ph  ->  X  =/=  {  .0.  } )   &    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  X ) )  =  X )   &    |-  ( ph  ->  -.  p  C_  ( X  .(+)  (  ._|_  `  X ) ) )   =>    |-  ( ph  ->  M  =/=  X )
 
Theoremdochexmidlem8 35106 Lemma for dochexmid 35107. The contradiction of dochexmidlem6 35104 and dochexmidlem7 35105 shows that there can be no atom  p that is not in  X  +  ( 
._|_  `  X ), which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( LSubSp `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  {  .0.  } )   &    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )   =>    |-  ( ph  ->  ( X  .(+)  (  ._|_  `  X ) )  =  V )
 
Theoremdochexmid 35107 Excluded middle law for closed subspaces, which is equivalent to (and derived from) the orthomodular law dihoml4 35016. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables  X,  M,  p,  q,  r in place of Hollands' l, m, P, Q, L respectively. (pexmidALTN 33614 analog.) (Contributed by NM, 15-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  ( LSubSp `  U )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  S )   &    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )   =>    |-  ( ph  ->  ( X  .(+)  (  ._|_  `  X ) )  =  V )
 
Theoremdochsnkrlem1 35108 Lemma for dochsnkr 35111. (Contributed by NM, 1-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =/=  V )
 
Theoremdochsnkrlem2 35109 Lemma for dochsnkr 35111. (Contributed by NM, 1-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )   &    |-  A  =  (LSAtoms `  U )   =>    |-  ( ph  ->  (  ._|_  `  ( L `  G ) )  e.  A )
 
Theoremdochsnkrlem3 35110 Lemma for dochsnkr 35111. (Contributed by NM, 2-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `
  G ) )
 
Theoremdochsnkr 35111 A (closed) kernel expressed in terms of a nonzero vector in its orthocomplement. TODO: consolidate lemmas unless they're needed for something else (in which case break out as theorems). (Contributed by NM, 2-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { X } ) )
 
Theoremdochsnkr2 35112* Kernel of the explicit functional 
G determined by a nonzero vector  X. Compare the more general lshpkr 32754. (Contributed by NM, 27-Oct-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |- 
 .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (Scalar `  U )   &    |-  R  =  ( Base `  D )   &    |-  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
 ) v  =  ( w  .+  ( k 
 .x.  X ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { X } ) )
 
Theoremdochsnkr2cl 35113* The  X determining functional  G belongs to the atom formed by the orthocomplement of the kernel. (Contributed by NM, 4-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |- 
 .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (Scalar `  U )   &    |-  R  =  ( Base `  D )   &    |-  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
 ) v  =  ( w  .+  ( k 
 .x.  X ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  X  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )
 
Theoremdochflcl 35114* Closure of the explicit functional 
G determined by a nonzero vector  X. Compare the more general lshpkrcl 32753. (Contributed by NM, 27-Oct-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |- 
 .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (Scalar `  U )   &    |-  R  =  ( Base `  D )   &    |-  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
 ) v  =  ( w  .+  ( k 
 .x.  X ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  G  e.  F )
 
Theoremdochfl1 35115* The value of the explicit functional  G is 1 at the  X that determines it. (Contributed by NM, 27-Oct-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  D  =  (Scalar `  U )   &    |-  R  =  (
 Base `  D )   &    |-  .1.  =  ( 1r `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  G  =  ( v  e.  V  |->  (
 iota_ k  e.  R  E. w  e.  (  ._|_  `  { X }
 ) v  =  ( w  .+  ( k 
 .x.  X ) ) ) )   =>    |-  ( ph  ->  ( G `  X )  =  .1.  )
 
Theoremdochfln0 35116 The value of a functional is nonzero at a nonzero vector in the orthocomplement of its kernel. (Contributed by NM, 2-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( G `  X )  =/= 
 N )
 
Theoremdochkr1 35117* A non-zero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 32707. (Contributed by NM, 2-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  U )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  G ) ) )  =/=  V )   =>    |-  ( ph  ->  E. x  e.  ( (  ._|_  `  ( L `  G ) ) 
 \  {  .0.  }
 ) ( G `  x )  =  .1.  )
 
Theoremdochkr1OLDN 35118* A non-zero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 32707. (Contributed by NM, 2-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .1.  =  ( 1r `  R )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  G ) ) )  =/=  V )   =>    |-  ( ph  ->  E. x  e.  (  ._|_  `  ( L `  G ) ) ( G `  x )  =  .1.  )
 
21.21.14  Construction of involution and inner product from a Hilbert lattice
 
SyntaxclpoN 35119 Extend class notation with all polarities of a left module or left vector space.
 class LPol
 
Definitiondf-lpolN 35120* Define the set of all polarities of a left module or left vector space. A polarity is a kind of complementation operation on a subspace. The double polarity of a subspace is a closure operation. Based on Definition 3.2 of [Holland95] p. 214 for projective geometry polarities. For convenience, we open up the domain to include all vector subsets and not just subspaces, but any more restricted polarity can be converted to this one by taking the span of its argument. (Contributed by NM, 24-Nov-2014.)
 |- LPol  =  ( w  e.  _V  |->  { o  e.  ( (
 LSubSp `  w )  ^m  ~P ( Base `  w )
 )  |  ( ( o `  ( Base `  w ) )  =  { ( 0g `  w ) }  /\  A. x A. y ( ( x  C_  ( Base `  w )  /\  y  C_  ( Base `  w )  /\  x  C_  y
 )  ->  ( o `  y )  C_  (
 o `  x )
 )  /\  A. x  e.  (LSAtoms `  w )
 ( ( o `  x )  e.  (LSHyp `  w )  /\  (
 o `  ( o `  x ) )  =  x ) ) }
 )
 
TheoremlpolsetN 35121* The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.)
 |-  V  =  ( Base `  W )   &    |-  S  =  ( LSubSp `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  A  =  (LSAtoms `  W )   &    |-  H  =  (LSHyp `  W )   &    |-  P  =  (LPol `  W )   =>    |-  ( W  e.  X  ->  P  =  { o  e.  ( S  ^m  ~P V )  |  (
 ( o `  V )  =  {  .0.  } 
 /\  A. x A. y
 ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y ) 
 ->  ( o `  y
 )  C_  ( o `  x ) )  /\  A. x  e.  A  ( ( o `  x )  e.  H  /\  ( o `  (
 o `  x )
 )  =  x ) ) } )
 
TheoremislpolN 35122* The predicate "is a polarity". (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.)
 |-  V  =  ( Base `  W )   &    |-  S  =  ( LSubSp `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  A  =  (LSAtoms `  W )   &    |-  H  =  (LSHyp `  W )   &    |-  P  =  (LPol `  W )   =>    |-  ( W  e.  X  ->  (  ._|_  e.  P  <->  ( 
 ._|_  : ~P V --> S  /\  ( (  ._|_  `  V )  =  {  .0.  } 
 /\  A. x A. y
 ( ( x  C_  V  /\  y  C_  V  /\  x  C_  y ) 
 ->  (  ._|_  `  y
 )  C_  (  ._|_  `  x ) )  /\  A. x  e.  A  ( (  ._|_  `  x )  e.  H  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x ) ) ) ) )
 
TheoremislpoldN 35123* Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
 |-  V  =  ( Base `  W )   &    |-  S  =  ( LSubSp `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  A  =  (LSAtoms `  W )   &    |-  H  =  (LSHyp `  W )   &    |-  P  =  (LPol `  W )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  ._|_  : ~P V --> S )   &    |-  ( ph  ->  ( 
 ._|_  `  V )  =  {  .0.  } )   &    |-  (
 ( ph  /\  ( x 
 C_  V  /\  y  C_  V  /\  x  C_  y ) )  ->  (  ._|_  `  y )  C_  (  ._|_  `  x ) )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  (  ._|_  `  x )  e.  H )   &    |-  (
 ( ph  /\  x  e.  A )  ->  (  ._|_  `  (  ._|_  `  x ) )  =  x )   =>    |-  ( ph  ->  ._|_  e.  P )
 
TheoremlpolfN 35124 Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
 |-  V  =  ( Base `  W )   &    |-  S  =  ( LSubSp `  W )   &    |-  P  =  (LPol `  W )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  ._|_  e.  P )   =>    |-  ( ph  ->  ._|_  : ~P V
 --> S )
 
TheoremlpolvN 35125 The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  P  =  (LPol `  W )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  ._|_  e.  P )   =>    |-  ( ph  ->  (  ._|_  `  V )  =  {  .0.  } )
 
TheoremlpolconN 35126 Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
 |-  V  =  ( Base `  W )   &    |-  P  =  (LPol `  W )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  ._|_  e.  P )   &    |-  ( ph  ->  X  C_  V )   &    |-  ( ph  ->  Y 
 C_  V )   &    |-  ( ph  ->  X  C_  Y )   =>    |-  ( ph  ->  (  ._|_  `  Y )  C_  (  ._|_  `  X )
 )
 
TheoremlpolsatN 35127 The polarity of an atomic subspace is a hyperplane. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
 |-  A  =  (LSAtoms `  W )   &    |-  H  =  (LSHyp `  W )   &    |-  P  =  (LPol `  W )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  ._|_  e.  P )   &    |-  ( ph  ->  Q  e.  A )   =>    |-  ( ph  ->  (  ._|_  `  Q )  e.  H )
 
TheoremlpolpolsatN 35128 Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
 |-  A  =  (LSAtoms `  W )   &    |-  P  =  (LPol `  W )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( ph  ->  ._|_  e.  P )   &    |-  ( ph  ->  Q  e.  A )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  Q ) )  =  Q )
 
TheoremdochpolN 35129 The subspace orthocomplement for the  DVecH vector space is a polarity. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  P  =  (LPol `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  ._|_  e.  P )
 
Theoremlcfl1lem 35130* Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.)
 |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   =>    |-  ( G  e.  C 
 <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `  G ) ) )
 
Theoremlcfl1 35131* Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.)
 |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `  G ) ) )
 
Theoremlcfl2 35132* Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `
  G ) ) )  =/=  V  \/  ( L `  G )  =  V ) ) )
 
Theoremlcfl3 35133* Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  ( L `  G ) )  e.  A  \/  ( L `  G )  =  V )
 ) )
 
Theoremlcfl4N 35134* Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  Y  =  (LSHyp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `
  G ) ) )  e.  Y  \/  ( L `  G )  =  V ) ) )
 
Theoremlcfl5 35135* Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( L `  G )  e.  ran  I ) )
 
Theoremlcfl5a 35136 Property of a functional with a closed kernel. TODO: Make lcfl5 35135 etc. obsolete and rewrite w/out 
C hypothesis? (Contributed by NM, 29-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `  G ) 
 <->  ( L `  G )  e.  ran  I ) )
 
Theoremlcfl6lem 35137* Lemma for lcfl6 35139. A functional  G (whose kernel is closed by dochsnkr 35111) is comletely determined by a vector  X in the orthocomplement in its kernel at which the functional value is 1. Note that the  \  {  .0.  } in the  X hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .1.  =  ( 1r `  S )   &    |-  R  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )   &    |-  ( ph  ->  ( G `  X )  =  .1.  )   =>    |-  ( ph  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
 k  .x.  X )
 ) ) ) )
 
Theoremlcfl7lem 35138* Lemma for lcfl7N 35140. If two functionals  G and  J are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
 k  .x.  X )
 ) ) )   &    |-  J  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { Y }
 ) v  =  ( w  .+  ( k 
 .x.  Y ) ) ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  G  =  J )   =>    |-  ( ph  ->  X  =  Y )
 
Theoremlcfl6 35139* Property of a functional with a closed kernel. Note that  ( L `  G )  =  V means the functional is zero by lkr0f 32731. (Contributed by NM, 3-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  {
 f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( ( L `
  G )  =  V  \/  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
 ) v  =  ( w  .+  ( k 
 .x.  x ) ) ) ) ) ) )
 
Theoremlcfl7N 35140* Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that  ( L `  G )  =  V means the functional is zero by lkr0f 32731. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  {
 f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( ( L `
  G )  =  V  \/  E! x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x }
 ) v  =  ( w  .+  ( k 
 .x.  x ) ) ) ) ) ) )
 
Theoremlcfl8 35141* Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  E. x  e.  V  ( L `  G )  =  (  ._|_  `  { x } ) ) )
 
Theoremlcfl8a 35142* Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `  G ) 
 <-> 
 E. x  e.  V  ( L `  G )  =  (  ._|_  `  { x } ) ) )
 
Theoremlcfl8b 35143* Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Y  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  ( C  \  { Y } ) )   =>    |-  ( ph  ->  E. x  e.  ( V  \  {  .0.  } ) (  ._|_  `  ( L `  G ) )  =  ( N `  { x }
 ) )
 
Theoremlcfl9a 35144 Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  (  ._|_  `  { X }
 )  C_  ( L `  G ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `
  G ) )
 
Theoremlclkrlem1 35145* The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  G  e.  C )   =>    |-  ( ph  ->  ( X  .x.  G )  e.  C )
 
Theoremlclkrlem2a 35146 Lemma for lclkr 35172. Use lshpat 32693 to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  (  ._|_  ` 
 { X } )  =/=  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  -.  X  e.  (  ._|_  `  { B }
 ) )   =>    |-  ( ph  ->  (
 ( ( N `  { X } )  .(+)  ( N `  { Y } ) )  i^i  (  ._|_  `  { B } ) )  e.  A )
 
Theoremlclkrlem2b 35147 Lemma for lclkr 35172. (Contributed by NM, 17-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  (  ._|_  ` 
 { X } )  =/=  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  `  { B } )  \/  -.  Y  e.  (  ._|_  `  { B } ) ) )   =>    |-  ( ph  ->  ( (
 ( N `  { X } )  .(+)  ( N `
  { Y }
 ) )  i^i  (  ._|_  `  { B }
 ) )  e.  A )
 
Theoremlclkrlem2c 35148 Lemma for lclkr 35172. (Contributed by NM, 16-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  (  ._|_  ` 
 { X } )  =/=  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  `  { B } )  \/  -.  Y  e.  (  ._|_  `  { B } ) ) )   &    |-  J  =  (LSHyp `  U )   =>    |-  ( ph  ->  (
 ( (  ._|_  `  { X } )  i^i  (  ._|_  ` 
 { Y } )
 )  .(+)  ( N `  { B } ) )  e.  J )
 
Theoremlclkrlem2d 35149 Lemma for lclkr 35172. (Contributed by NM, 16-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  (  ._|_  ` 
 { X } )  =/=  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  `  { B } )  \/  -.  Y  e.  (  ._|_  `  { B } ) ) )   &    |-  I  =  ( ( DIsoH `  K ) `  W )   =>    |-  ( ph  ->  (
 ( (  ._|_  `  { X } )  i^i  (  ._|_  ` 
 { Y } )
 )  .(+)  ( N `  { B } ) )  e.  ran  I )
 
Theoremlclkrlem2e 35150 Lemma for lclkr 35172. The kernel of the sum is closed when the kernels of the summands are equal and closed. (Contributed by NM, 17-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  E )  =  ( L `  G ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2f 35151 Lemma for lclkr 35172. Construct a closed hyperplane under the kernel of the sum. (Contributed by NM, 16-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( L `  E )  =/=  ( L `  G ) )   &    |-  ( ph  ->  ( L `  ( E  .+  G ) )  e.  J )   =>    |-  ( ph  ->  (
 ( ( L `  E )  i^i  ( L `
  G ) ) 
 .(+)  ( N `  { B } ) )  C_  ( L `  ( E 
 .+  G ) ) )
 
Theoremlclkrlem2g 35152 Lemma for lclkr 35172. Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( L `  E )  =/=  ( L `  G ) )   &    |-  ( ph  ->  ( L `  ( E  .+  G ) )  e.  J )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2h 35153 Lemma for lclkr 35172. Eliminate the  ( L `  ( E 
.+  G ) )  e.  J hypothesis. (Contributed by NM, 16-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( L `  E )  =/=  ( L `  G ) )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `
  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2i 35154 Lemma for lclkr 35172. Eliminate the  ( L `  E )  =/=  ( L `  G ) hypothesis. (Contributed by NM, 17-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `
  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2j 35155 Lemma for lclkr 35172. Kernel closure when  Y is zero. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  =  .0.  )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2k 35156 Lemma for lclkr 35172. Kernel closure when  X is zero. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  =  .0.  )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2l 35157 Lemma for lclkr 35172. Eliminate the  X  =/=  .0.,  Y  =/=  .0. hypotheses. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2m 35158 Lemma for lclkr 35172. Construct a vector  B that makes the sum of functionals zero. Combine with  B  e.  V to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   =>    |-  ( ph  ->  ( B  e.  V  /\  ( ( E  .+  G ) `  B )  =  .0.  )
 )
 
Theoremlclkrlem2n 35159 Lemma for lclkr 35172. (Contributed by NM, 12-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  ( ( E  .+  G ) `  X )  =  .0.  )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =  .0.  )   =>    |-  ( ph  ->  ( N `  { X ,  Y } )  C_  ( L `  ( E  .+  G ) ) )
 
Theoremlclkrlem2o 35160 Lemma for lclkr 35172. When  B is nonzero, the vectors  X and  Y can't both belong to the hyperplane generated by  B. (Contributed by NM, 17-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =/=  ( 0g `  U ) )   =>    |-  ( ph  ->  ( -.  X  e.  (  ._|_  `  { B }
 )  \/  -.  Y  e.  (  ._|_  `  { B } ) ) )
 
Theoremlclkrlem2p 35161 Lemma for lclkr 35172. When  B is zero,  X and  Y must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =  ( 0g `  U ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  { Y }
 )  C_  (  ._|_  ` 
 { X } )
 )
 
Theoremlclkrlem2q 35162 Lemma for lclkr 35172. The sum has a closed kernel when  B is nonzero. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =/=  ( 0g `  U ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2r 35163 Lemma for lclkr 35172. When  B is zero, i.e. when  X and  Y are colinear, the intersection of the kernels of  E and  G equal the kernel of  G, so the kernels of  G and the sum are comparable. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =  ( 0g `  U ) )   =>    |-  ( ph  ->  ( L `  G ) 
 C_  ( L `  ( E  .+  G ) ) )
 
Theoremlclkrlem2s 35164 Lemma for lclkr 35172. Thus, the sum has a closed kernel when  B is zero. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =  ( 0g `  U ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2t 35165 Lemma for lclkr 35172. We eliminate all hypotheses with  B here. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2u 35166 Lemma for lclkr 35172. lclkrlem2t 35165 with  X and  Y swapped. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  X )  =/= 
 .0.  )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2v 35167 Lemma for lclkr 35172. When the hypotheses of lclkrlem2u 35166 and lclkrlem2u 35166 are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid 35107, which requires the orthomodular law dihoml4 35016 (Lemma 3.3 of [Holland95] p. 214). (Contributed by NM, 16-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  X )  =  .0.  )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =  .0.  )   =>    |-  ( ph  ->  ( L `  ( E  .+  G ) )  =  V )
 
Theoremlclkrlem2w 35168 Lemma for lclkr 35172. This is the same as lclkrlem2u 35166 and lclkrlem2u 35166 with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  X )  =  .0.  )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =  .0.  )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2x 35169 Lemma for lclkr 35172. Eliminate by cases the hypotheses of lclkrlem2u 35166, lclkrlem2u 35166 and lclkrlem2w 35168. (Contributed by NM, 18-Jan-2015.)
 |-  L  =  (LKer `  U )   &    |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2y 35170 Lemma for lclkr 35172. Restate the hypotheses for  E and  G to say their kernels are closed, in order to eliminate the generating vectors  X and  Y. (Contributed by NM, 18-Jan-2015.)
 |-  L  =  (LKer `  U )   &    |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  E ) ) )  =  ( L `
  E ) )   &    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `
  G ) ) )  =  ( L `
  G ) )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `
  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2 35171* The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 35146 through lclkrlem2y 35170 are used for the proof. Here we express lclkrlem2y 35170 in terms of membership in the set  C of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  E  e.  C )   &    |-  ( ph  ->  G  e.  C )   =>    |-  ( ph  ->  ( E  .+  G )  e.  C )
 
Theoremlclkr 35172* The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  S  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  e.  S )
 
Theoremlcfls1lem 35173* Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   =>    |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `
  G )  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) )
 
Theoremlcfls1N 35174* Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `
  G ) ) )  =  ( L `
  G )  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) ) )
 
Theoremlcfls1c 35175* Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   &    |-  D  =  {
 f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   =>    |-  ( G  e.  C  <->  ( G  e.  D  /\  (  ._|_  `  ( L `  G ) ) 
 C_  Q ) )
 
Theoremlclkrslem1 35176* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  { f  e.  F  |  ( ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  S )   &    |-  ( ph  ->  G  e.  C )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .x.  G )  e.  C )
 
Theoremlclkrslem2 35177* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. (Contributed by NM, 28-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  { f  e.  F  |  ( ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  S )   &    |-  ( ph  ->  G  e.  C )   &    |- 
 .+  =  ( +g  `  D )   &    |-  ( ph  ->  E  e.  C )   =>    |-  ( ph  ->  ( E  .+  G )  e.  C )
 
Theoremlclkrs 35178* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  R is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 35172 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 35172 a special case of this? (Contributed by NM, 29-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  R ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  R  e.  S )   =>    |-  ( ph  ->  C  e.  T )
 
Theoremlclkrs2 35179* The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace  Q is a subspace of the dual space containing functionals with closed kernels. Note that  R is the value given by mapdval 35267. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  R  =  { g  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  g ) ) )  =  ( L `  g )  /\  (  ._|_  `  ( L `  g
 ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  Q  e.  S )   =>    |-  ( ph  ->  ( R  e.  T  /\  R  C_  C ) )
 
TheoremlcfrvalsnN 35180* Reconstruction from the dual space span of a singleton. (Contributed by NM, 19-Feb-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  N  =  ( LSpan `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  Q  =  U_ f  e.  R  (  ._|_  `  ( L `  f ) )   &    |-  R  =  ( N `  { G } )   =>    |-  ( ph  ->  Q  =  (  ._|_  `  ( L `  G ) ) )
 
Theoremlcfrlem1 35181 Lemma for lcfr 35224. Note that  X is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   =>    |-  ( ph  ->  ( H `  X )  =  .0.  )
 
Theoremlcfrlem2 35182 Lemma for lcfr 35224. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  (
 ( L `  E )  i^i  ( L `  G ) )  C_  ( L `  H ) )
 
Theoremlcfrlem3 35183 Lemma for lcfr 35224. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  X  e.  ( L `  H ) )
 
Theoremlcfrlem4 35184* Lemma for lcfr 35224. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  X  e.  E )   =>    |-  ( ph  ->  X  e.  V )
 
Theoremlcfrlem5 35185* Lemma for lcfr 35224. The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  S  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  S )   &    |-  Q  =  U_ f  e.  R  (  ._|_  `  ( L `  f ) )   &    |-  ( ph  ->  X  e.  Q )   &    |-  C  =  (Scalar `  U )   &    |-  B  =  ( Base `  C )   &    |-  .x.  =  ( .s `  U )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  ( A  .x.  X )  e.  Q )
 
Theoremlcfrlem6 35186* Lemma for lcfr 35224. Closure of vector sum with colinear vectors. TODO: Move down  N definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem7 35187* Lemma for lcfr 35224. Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &