Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk4 Structured version   Visualization version   GIF version

Theorem cdlemk4 35140
 Description: Part of proof of Lemma K of [Crawley] p. 118, last line. We use 𝑋 for their h, since 𝐻 is already used. (Contributed by NM, 24-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
Assertion
Ref Expression
cdlemk4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))

Proof of Theorem cdlemk4
StepHypRef Expression
1 simp1l 1078 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
2 simp1 1054 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1080 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
4 simp3l 1082 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
5 cdlemk.l . . . . 5 = (le‘𝐾)
6 cdlemk.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 34444 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
102, 3, 4, 9syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
11 simp2r 1081 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋𝑇)
125, 6, 7, 8ltrnat 34444 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝑃𝐴) → (𝑋𝑃) ∈ 𝐴)
132, 11, 4, 12syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐴)
14 cdlemk.j . . . 4 = (join‘𝐾)
155, 14, 6hlatlej1 33679 . . 3 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
161, 10, 13, 15syl3anc 1318 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝐹𝑃) (𝑋𝑃)))
17 hllat 33668 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
181, 17syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
19 cdlemk.b . . . . . . 7 𝐵 = (Base‘𝐾)
2019, 6atbase 33594 . . . . . 6 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ 𝐵)
2110, 20syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐵)
2219, 6atbase 33594 . . . . . 6 ((𝑋𝑃) ∈ 𝐴 → (𝑋𝑃) ∈ 𝐵)
2313, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ∈ 𝐵)
2419, 14latjcl 16874 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐹𝑃) ∈ 𝐵 ∧ (𝑋𝑃) ∈ 𝐵) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
2518, 21, 23, 24syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵)
26 simp1r 1079 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
2719, 7lhpbase 34302 . . . . 5 (𝑊𝐻𝑊𝐵)
2826, 27syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
295, 14, 6hlatlej2 33680 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝑋𝑃) ∈ 𝐴) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
301, 10, 13, 29syl3anc 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃)))
31 cdlemk.m . . . . 5 = (meet‘𝐾)
3219, 5, 14, 31, 6atmod3i1 34168 . . . 4 ((𝐾 ∈ HL ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵𝑊𝐵) ∧ (𝑋𝑃) ((𝐹𝑃) (𝑋𝑃))) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
331, 13, 25, 28, 30, 32syl131anc 1331 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
347, 8ltrncnv 34450 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
352, 3, 34syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
367, 8ltrnco 35025 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐹𝑇) → (𝑋𝐹) ∈ 𝑇)
372, 11, 35, 36syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝐹) ∈ 𝑇)
385, 6, 7, 8ltrnel 34443 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
393, 38syld3an2 1365 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
40 cdlemk.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
415, 14, 31, 6, 7, 8, 40trlval2 34468 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐹) ∈ 𝑇 ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
422, 37, 39, 41syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊))
4319, 7, 8ltrn1o 34428 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
442, 3, 43syl2anc 691 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
45 f1ococnv1 6078 . . . . . . . . . . . . . 14 (𝐹:𝐵1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
4644, 45syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝐹) = ( I ↾ 𝐵))
4746coeq2d 5206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ (𝐹𝐹)) = (𝑋 ∘ ( I ↾ 𝐵)))
4819, 7, 8ltrn1o 34428 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑋:𝐵1-1-onto𝐵)
492, 11, 48syl2anc 691 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋:𝐵1-1-onto𝐵)
50 f1of 6050 . . . . . . . . . . . . 13 (𝑋:𝐵1-1-onto𝐵𝑋:𝐵𝐵)
51 fcoi1 5991 . . . . . . . . . . . . 13 (𝑋:𝐵𝐵 → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5249, 50, 513syl 18 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋 ∘ ( I ↾ 𝐵)) = 𝑋)
5347, 52eqtr2d 2645 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = (𝑋 ∘ (𝐹𝐹)))
54 coass 5571 . . . . . . . . . . 11 ((𝑋𝐹) ∘ 𝐹) = (𝑋 ∘ (𝐹𝐹))
5553, 54syl6eqr 2662 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑋 = ((𝑋𝐹) ∘ 𝐹))
5655fveq1d 6105 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = (((𝑋𝐹) ∘ 𝐹)‘𝑃))
575, 6, 7, 8ltrncoval 34449 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐹) ∈ 𝑇𝐹𝑇) ∧ 𝑃𝐴) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
582, 37, 3, 4, 57syl121anc 1323 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑋𝐹) ∘ 𝐹)‘𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
5956, 58eqtrd 2644 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑋𝑃) = ((𝑋𝐹)‘(𝐹𝑃)))
6059oveq2d 6565 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))))
6160eqcomd 2616 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) = ((𝐹𝑃) (𝑋𝑃)))
6261oveq1d 6564 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) ((𝑋𝐹)‘(𝐹𝑃))) 𝑊) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6342, 62eqtrd 2644 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑋𝐹)) = (((𝐹𝑃) (𝑋𝑃)) 𝑊))
6463oveq2d 6565 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) (𝑅‘(𝑋𝐹))) = ((𝑋𝑃) (((𝐹𝑃) (𝑋𝑃)) 𝑊)))
655, 6, 7, 8ltrnel 34443 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
6611, 65syld3an2 1365 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊))
67 eqid 2610 . . . . . . 7 (1.‘𝐾) = (1.‘𝐾)
685, 14, 67, 6, 7lhpjat2 34325 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝑃) ∈ 𝐴 ∧ ¬ (𝑋𝑃) 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
692, 66, 68syl2anc 691 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑋𝑃) 𝑊) = (1.‘𝐾))
7069oveq2d 6565 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)) = (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)))
71 hlol 33666 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
721, 71syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
7319, 31, 67olm11 33532 . . . . 5 ((𝐾 ∈ OL ∧ ((𝐹𝑃) (𝑋𝑃)) ∈ 𝐵) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7472, 25, 73syl2anc 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐹𝑃) (𝑋𝑃)) (1.‘𝐾)) = ((𝐹𝑃) (𝑋𝑃)))
7570, 74eqtr2d 2645 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = (((𝐹𝑃) (𝑋𝑃)) ((𝑋𝑃) 𝑊)))
7633, 64, 753eqtr4rd 2655 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑋𝑃)) = ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
7716, 76breqtrd 4609 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583   I cid 4948  ◡ccnv 5037   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  1.cp1 16861  Latclat 16868  OLcol 33479  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  trLctrl 34463 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464 This theorem is referenced by:  cdlemk5a  35141
 Copyright terms: Public domain W3C validator