Step | Hyp | Ref
| Expression |
1 | | simp1 1054 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | ltrnco.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | eqid 2610 |
. . . . 5
⊢
((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) |
4 | | ltrnco.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
5 | 2, 3, 4 | ltrnldil 34426 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) |
6 | 5 | 3adant3 1074 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) |
7 | 2, 3, 4 | ltrnldil 34426 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺 ∈ ((LDil‘𝐾)‘𝑊)) |
8 | 7 | 3adant2 1073 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → 𝐺 ∈ ((LDil‘𝐾)‘𝑊)) |
9 | 2, 3 | ldilco 34420 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ 𝐺 ∈ ((LDil‘𝐾)‘𝑊)) → (𝐹 ∘ 𝐺) ∈ ((LDil‘𝐾)‘𝑊)) |
10 | 1, 6, 8, 9 | syl3anc 1318 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ ((LDil‘𝐾)‘𝑊)) |
11 | | simp11 1084 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | | simp2l 1080 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾)) |
13 | | simp3l 1082 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊) |
14 | 12, 13 | jca 553 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) |
15 | | simp2r 1081 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾)) |
16 | | simp3r 1083 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊) |
17 | 15, 16 | jca 553 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) |
18 | | simp12 1085 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐹 ∈ 𝑇) |
19 | | simp13 1086 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐺 ∈ 𝑇) |
20 | | eqid 2610 |
. . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) |
21 | | eqid 2610 |
. . . . . 6
⊢
(join‘𝐾) =
(join‘𝐾) |
22 | | eqid 2610 |
. . . . . 6
⊢
(meet‘𝐾) =
(meet‘𝐾) |
23 | | eqid 2610 |
. . . . . 6
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
24 | 20, 21, 22, 23, 2, 4 | cdlemg41 35024 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑝(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑞))(meet‘𝐾)𝑊)) |
25 | 11, 14, 17, 18, 19, 24 | syl122anc 1327 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑞))(meet‘𝐾)𝑊)) |
26 | 25 | 3exp 1256 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑞))(meet‘𝐾)𝑊)))) |
27 | 26 | ralrimivv 2953 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑞))(meet‘𝐾)𝑊))) |
28 | 20, 21, 22, 23, 2, 3, 4 | isltrn 34423 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝐹 ∘ 𝐺) ∈ 𝑇 ↔ ((𝐹 ∘ 𝐺) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑞))(meet‘𝐾)𝑊))))) |
29 | 28 | 3ad2ant1 1075 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝐹 ∘ 𝐺) ∈ 𝑇 ↔ ((𝐹 ∘ 𝐺) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹 ∘ 𝐺)‘𝑞))(meet‘𝐾)𝑊))))) |
30 | 10, 27, 29 | mpbir2and 959 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) |