Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnv Structured version   Visualization version   GIF version

Theorem ltrncnv 34450
Description: The converse of a lattice translation is a lattice translation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ltrncnv.h 𝐻 = (LHyp‘𝐾)
ltrncnv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)

Proof of Theorem ltrncnv
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrncnv.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2610 . . . 4 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
3 ltrncnv.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrnldil 34426 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
51, 2ldilcnv 34419 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
64, 5syldan 486 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
7 simp1 1054 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇))
8 simp1l 1078 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp1r 1079 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐹𝑇)
10 simp2l 1080 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
11 simp3l 1082 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊)
12 eqid 2610 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
13 eqid 2610 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
1412, 13, 1, 3ltrncnvel 34446 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑝)(le‘𝐾)𝑊))
158, 9, 10, 11, 14syl112anc 1322 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑝)(le‘𝐾)𝑊))
16 simp2r 1081 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾))
17 simp3r 1083 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊)
1812, 13, 1, 3ltrncnvel 34446 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑞)(le‘𝐾)𝑊))
198, 9, 16, 17, 18syl112anc 1322 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑞)(le‘𝐾)𝑊))
20 eqid 2610 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
21 eqid 2610 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
2212, 20, 21, 13, 1, 3ltrnu 34425 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ((𝐹𝑝) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑝)(le‘𝐾)𝑊) ∧ ((𝐹𝑞) ∈ (Atoms‘𝐾) ∧ ¬ (𝐹𝑞)(le‘𝐾)𝑊)) → (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊) = (((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞)))(meet‘𝐾)𝑊))
237, 15, 19, 22syl3anc 1318 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊) = (((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞)))(meet‘𝐾)𝑊))
24 eqid 2610 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2524, 1, 3ltrn1o 34428 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
26253ad2ant1 1075 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
2724, 13atbase 33594 . . . . . . . . . 10 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
2810, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Base‘𝐾))
29 f1ocnvfv2 6433 . . . . . . . . 9 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑝)) = 𝑝)
3026, 28, 29syl2anc 691 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐹‘(𝐹𝑝)) = 𝑝)
3130oveq2d 6565 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝))) = ((𝐹𝑝)(join‘𝐾)𝑝))
32 simp1ll 1117 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
3312, 13, 1, 3ltrncnvat 34445 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑝 ∈ (Atoms‘𝐾)) → (𝐹𝑝) ∈ (Atoms‘𝐾))
348, 9, 10, 33syl3anc 1318 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐹𝑝) ∈ (Atoms‘𝐾))
3520, 13hlatjcom 33672 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝐹𝑝) ∈ (Atoms‘𝐾) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝐹𝑝)(join‘𝐾)𝑝) = (𝑝(join‘𝐾)(𝐹𝑝)))
3632, 34, 10, 35syl3anc 1318 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)𝑝) = (𝑝(join‘𝐾)(𝐹𝑝)))
3731, 36eqtrd 2644 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝))) = (𝑝(join‘𝐾)(𝐹𝑝)))
3837oveq1d 6564 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (((𝐹𝑝)(join‘𝐾)(𝐹‘(𝐹𝑝)))(meet‘𝐾)𝑊) = ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊))
3924, 13atbase 33594 . . . . . . . . . 10 (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾))
4016, 39syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Base‘𝐾))
41 f1ocnvfv2 6433 . . . . . . . . 9 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑞)) = 𝑞)
4226, 40, 41syl2anc 691 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐹‘(𝐹𝑞)) = 𝑞)
4342oveq2d 6565 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞))) = ((𝐹𝑞)(join‘𝐾)𝑞))
4412, 13, 1, 3ltrncnvat 34445 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑞 ∈ (Atoms‘𝐾)) → (𝐹𝑞) ∈ (Atoms‘𝐾))
458, 9, 16, 44syl3anc 1318 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐹𝑞) ∈ (Atoms‘𝐾))
4620, 13hlatjcom 33672 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝐹𝑞) ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝐹𝑞)(join‘𝐾)𝑞) = (𝑞(join‘𝐾)(𝐹𝑞)))
4732, 45, 16, 46syl3anc 1318 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞)(join‘𝐾)𝑞) = (𝑞(join‘𝐾)(𝐹𝑞)))
4843, 47eqtrd 2644 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞))) = (𝑞(join‘𝐾)(𝐹𝑞)))
4948oveq1d 6564 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (((𝐹𝑞)(join‘𝐾)(𝐹‘(𝐹𝑞)))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊))
5023, 38, 493eqtr3d 2652 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊))
51503exp 1256 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊))))
5251ralrimivv 2953 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊)))
5312, 20, 21, 13, 1, 2, 3isltrn 34423 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊)))))
5453adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊)))))
556, 52, 54mpbir2and 959 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  ccnv 5037  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LHypclh 34288  LDilcldil 34404  LTrncltrn 34405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-p0 16862  df-lat 16869  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409
This theorem is referenced by:  trlcnv  34470  trlcocnv  35026  trlcoabs2N  35028  trlcoat  35029  trlcocnvat  35030  trlcone  35034  cdlemg46  35041  tgrpgrplem  35055  tendoicl  35102  cdlemh1  35121  cdlemh2  35122  cdlemh  35123  cdlemi2  35125  cdlemi  35126  cdlemk2  35138  cdlemk3  35139  cdlemk4  35140  cdlemk8  35144  cdlemk9  35145  cdlemk9bN  35146  cdlemkvcl  35148  cdlemk10  35149  cdlemk11  35155  cdlemk12  35156  cdlemk14  35160  cdlemk11u  35177  cdlemk12u  35178  cdlemk37  35220  cdlemkfid1N  35227  cdlemkid1  35228  cdlemkid2  35230  tendocnv  35328  tendospcanN  35330  dvhgrp  35414  cdlemn8  35511  dihopelvalcpre  35555  dih1  35593  dihglbcpreN  35607  dihjatcclem3  35727  dihjatcclem4  35728
  Copyright terms: Public domain W3C validator