Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk4 Structured version   Visualization version   Unicode version

Theorem cdlemk4 34446
Description: Part of proof of Lemma K of [Crawley] p. 118, last line. We use  X for their h, since  H is already used. (Contributed by NM, 24-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemk4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( X `  P ) 
.\/  ( R `  ( X  o.  `' F ) ) ) )

Proof of Theorem cdlemk4
StepHypRef Expression
1 simp1l 1038 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 simp1 1014 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2l 1040 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
4 simp3l 1042 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
5 cdlemk.l . . . . 5  |-  .<_  =  ( le `  K )
6 cdlemk.a . . . . 5  |-  A  =  ( Atoms `  K )
7 cdlemk.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 cdlemk.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
95, 6, 7, 8ltrnat 33750 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
102, 3, 4, 9syl3anc 1276 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
11 simp2r 1041 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  e.  T )
125, 6, 7, 8ltrnat 33750 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  P  e.  A
)  ->  ( X `  P )  e.  A
)
132, 11, 4, 12syl3anc 1276 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  e.  A
)
14 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
155, 14, 6hlatlej1 32985 . . 3  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( X `  P )  e.  A )  ->  ( F `  P )  .<_  ( ( F `  P )  .\/  ( X `  P )
) )
161, 10, 13, 15syl3anc 1276 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( F `  P ) 
.\/  ( X `  P ) ) )
17 hllat 32974 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
181, 17syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
19 cdlemk.b . . . . . . 7  |-  B  =  ( Base `  K
)
2019, 6atbase 32900 . . . . . 6  |-  ( ( F `  P )  e.  A  ->  ( F `  P )  e.  B )
2110, 20syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  B
)
2219, 6atbase 32900 . . . . . 6  |-  ( ( X `  P )  e.  A  ->  ( X `  P )  e.  B )
2313, 22syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  e.  B
)
2419, 14latjcl 16346 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F `  P )  e.  B  /\  ( X `  P )  e.  B )  ->  (
( F `  P
)  .\/  ( X `  P ) )  e.  B )
2518, 21, 23, 24syl3anc 1276 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( X `  P
) )  e.  B
)
26 simp1r 1039 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
2719, 7lhpbase 33608 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
2826, 27syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  B )
295, 14, 6hlatlej2 32986 . . . . 5  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( X `  P )  e.  A )  ->  ( X `  P )  .<_  ( ( F `  P )  .\/  ( X `  P )
) )
301, 10, 13, 29syl3anc 1276 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  .<_  ( ( F `  P ) 
.\/  ( X `  P ) ) )
31 cdlemk.m . . . . 5  |-  ./\  =  ( meet `  K )
3219, 5, 14, 31, 6atmod3i1 33474 . . . 4  |-  ( ( K  e.  HL  /\  ( ( X `  P )  e.  A  /\  ( ( F `  P )  .\/  ( X `  P )
)  e.  B  /\  W  e.  B )  /\  ( X `  P
)  .<_  ( ( F `
 P )  .\/  ( X `  P ) ) )  ->  (
( X `  P
)  .\/  ( (
( F `  P
)  .\/  ( X `  P ) )  ./\  W ) )  =  ( ( ( F `  P )  .\/  ( X `  P )
)  ./\  ( ( X `  P )  .\/  W ) ) )
331, 13, 25, 28, 30, 32syl131anc 1289 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  .\/  ( ( ( F `
 P )  .\/  ( X `  P ) )  ./\  W )
)  =  ( ( ( F `  P
)  .\/  ( X `  P ) )  ./\  ( ( X `  P )  .\/  W
) ) )
347, 8ltrncnv 33756 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
352, 3, 34syl2anc 671 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' F  e.  T )
367, 8ltrnco 34331 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  `' F  e.  T
)  ->  ( X  o.  `' F )  e.  T
)
372, 11, 35, 36syl3anc 1276 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  `' F )  e.  T
)
385, 6, 7, 8ltrnel 33749 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
393, 38syld3an2 1323 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
40 cdlemk.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
415, 14, 31, 6, 7, 8, 40trlval2 33774 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  o.  `' F )  e.  T  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  ->  ( R `  ( X  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( ( X  o.  `' F ) `  ( F `  P )
) )  ./\  W
) )
422, 37, 39, 41syl3anc 1276 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( X  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( ( X  o.  `' F ) `  ( F `  P )
) )  ./\  W
) )
4319, 7, 8ltrn1o 33734 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
442, 3, 43syl2anc 671 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F : B
-1-1-onto-> B )
45 f1ococnv1 5865 . . . . . . . . . . . . . 14  |-  ( F : B -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
4644, 45syl 17 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
4746coeq2d 5016 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  ( `' F  o.  F ) )  =  ( X  o.  (  _I  |`  B ) ) )
4819, 7, 8ltrn1o 33734 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T
)  ->  X : B
-1-1-onto-> B )
492, 11, 48syl2anc 671 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X : B
-1-1-onto-> B )
50 f1of 5837 . . . . . . . . . . . . 13  |-  ( X : B -1-1-onto-> B  ->  X : B
--> B )
51 fcoi1 5780 . . . . . . . . . . . . 13  |-  ( X : B --> B  -> 
( X  o.  (  _I  |`  B ) )  =  X )
5249, 50, 513syl 18 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  (  _I  |`  B ) )  =  X )
5347, 52eqtr2d 2497 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  =  ( X  o.  ( `' F  o.  F
) ) )
54 coass 5373 . . . . . . . . . . 11  |-  ( ( X  o.  `' F
)  o.  F )  =  ( X  o.  ( `' F  o.  F
) )
5553, 54syl6eqr 2514 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  =  ( ( X  o.  `' F )  o.  F
) )
5655fveq1d 5890 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  =  ( ( ( X  o.  `' F )  o.  F
) `  P )
)
575, 6, 7, 8ltrncoval 33755 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X  o.  `' F )  e.  T  /\  F  e.  T )  /\  P  e.  A )  ->  (
( ( X  o.  `' F )  o.  F
) `  P )  =  ( ( X  o.  `' F ) `
 ( F `  P ) ) )
582, 37, 3, 4, 57syl121anc 1281 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( X  o.  `' F )  o.  F
) `  P )  =  ( ( X  o.  `' F ) `
 ( F `  P ) ) )
5956, 58eqtrd 2496 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  =  ( ( X  o.  `' F ) `  ( F `  P )
) )
6059oveq2d 6331 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( X `  P
) )  =  ( ( F `  P
)  .\/  ( ( X  o.  `' F
) `  ( F `  P ) ) ) )
6160eqcomd 2468 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( ( X  o.  `' F ) `  ( F `  P )
) )  =  ( ( F `  P
)  .\/  ( X `  P ) ) )
6261oveq1d 6330 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( ( X  o.  `' F
) `  ( F `  P ) ) ) 
./\  W )  =  ( ( ( F `
 P )  .\/  ( X `  P ) )  ./\  W )
)
6342, 62eqtrd 2496 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( X  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( X `  P ) )  ./\  W )
)
6463oveq2d 6331 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F
) ) )  =  ( ( X `  P )  .\/  (
( ( F `  P )  .\/  ( X `  P )
)  ./\  W )
) )
655, 6, 7, 8ltrnel 33749 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  e.  A  /\  -.  ( X `  P )  .<_  W ) )
6611, 65syld3an2 1323 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  e.  A  /\  -.  ( X `  P )  .<_  W ) )
67 eqid 2462 . . . . . . 7  |-  ( 1.
`  K )  =  ( 1. `  K
)
685, 14, 67, 6, 7lhpjat2 33631 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X `
 P )  e.  A  /\  -.  ( X `  P )  .<_  W ) )  -> 
( ( X `  P )  .\/  W
)  =  ( 1.
`  K ) )
692, 66, 68syl2anc 671 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  .\/  W )  =  ( 1. `  K ) )
7069oveq2d 6331 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( X `  P ) )  ./\  ( ( X `  P )  .\/  W
) )  =  ( ( ( F `  P )  .\/  ( X `  P )
)  ./\  ( 1. `  K ) ) )
71 hlol 32972 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
721, 71syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OL )
7319, 31, 67olm11 32838 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( F `  P )  .\/  ( X `  P )
)  e.  B )  ->  ( ( ( F `  P ) 
.\/  ( X `  P ) )  ./\  ( 1. `  K ) )  =  ( ( F `  P ) 
.\/  ( X `  P ) ) )
7472, 25, 73syl2anc 671 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( X `  P ) )  ./\  ( 1. `  K ) )  =  ( ( F `  P ) 
.\/  ( X `  P ) ) )
7570, 74eqtr2d 2497 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( X `  P
) )  =  ( ( ( F `  P )  .\/  ( X `  P )
)  ./\  ( ( X `  P )  .\/  W ) ) )
7633, 64, 753eqtr4rd 2507 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( X `  P
) )  =  ( ( X `  P
)  .\/  ( R `  ( X  o.  `' F ) ) ) )
7716, 76breqtrd 4441 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( X `  P ) 
.\/  ( R `  ( X  o.  `' F ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   class class class wbr 4416    _I cid 4763   `'ccnv 4852    |` cres 4855    o. ccom 4857   -->wf 5597   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6315   Basecbs 15170   lecple 15246   joincjn 16238   meetcmee 16239   1.cp1 16333   Latclat 16340   OLcol 32785   Atomscatm 32874   HLchlt 32961   LHypclh 33594   LTrncltrn 33711   trLctrl 33769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-riotaBAD 32570
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-iin 4295  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-1st 6820  df-2nd 6821  df-undef 7046  df-map 7500  df-preset 16222  df-poset 16240  df-plt 16253  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-p0 16334  df-p1 16335  df-lat 16341  df-clat 16403  df-oposet 32787  df-ol 32789  df-oml 32790  df-covers 32877  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962  df-llines 33108  df-lplanes 33109  df-lvols 33110  df-lines 33111  df-psubsp 33113  df-pmap 33114  df-padd 33406  df-lhyp 33598  df-laut 33599  df-ldil 33714  df-ltrn 33715  df-trl 33770
This theorem is referenced by:  cdlemk5a  34447
  Copyright terms: Public domain W3C validator