Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngplus2 Structured version   Visualization version   GIF version

Theorem erngplus2 35110
 Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
erngset.h 𝐻 = (LHyp‘𝐾)
erngset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngset.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erng.p + = (+g𝐷)
Assertion
Ref Expression
erngplus2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))

Proof of Theorem erngplus2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 erngset.h . . . 4 𝐻 = (LHyp‘𝐾)
2 erngset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 erngset.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 erng.p . . . 4 + = (+g𝐷)
61, 2, 3, 4, 5erngplus 35109 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
763adantr3 1215 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
8 fveq2 6103 . . . 4 (𝑓 = 𝐹 → (𝑈𝑓) = (𝑈𝐹))
9 fveq2 6103 . . . 4 (𝑓 = 𝐹 → (𝑉𝑓) = (𝑉𝐹))
108, 9coeq12d 5208 . . 3 (𝑓 = 𝐹 → ((𝑈𝑓) ∘ (𝑉𝑓)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
1110adantl 481 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) ∧ 𝑓 = 𝐹) → ((𝑈𝑓) ∘ (𝑉𝑓)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
12 simpr3 1062 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝐹𝑇)
13 fvex 6113 . . . 4 (𝑈𝐹) ∈ V
14 fvex 6113 . . . 4 (𝑉𝐹) ∈ V
1513, 14coex 7011 . . 3 ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V
1615a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V)
177, 11, 12, 16fvmptd 6197 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ↦ cmpt 4643   ∘ ccom 5042  ‘cfv 5804  (class class class)co 6549  +gcplusg 15768  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  EDRingcedring 35059 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-edring 35063 This theorem is referenced by:  dvhlveclem  35415
 Copyright terms: Public domain W3C validator