HomeHome Metamath Proof Explorer
Theorem List (p. 194 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 19301-19400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremopsrplusg 19301 The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))       (𝜑 → (+g𝑆) = (+g𝑂))
 
Theoremopsrmulr 19302 The multiplication operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))       (𝜑 → (.r𝑆) = (.r𝑂))
 
Theoremopsrvsca 19303 The scalar product operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))       (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑂))
 
Theoremopsrsca 19304 The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑆 = (𝐼 mPwSer 𝑅)    &   𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))    &   (𝜑𝐼𝑉)    &   (𝜑𝑅𝑊)       (𝜑𝑅 = (Scalar‘𝑂))
 
Theoremopsrtoslem1 19305* Lemma for opsrtos 19307. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Toset)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))    &   (𝜑𝑇 We 𝐼)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    < = (lt‘𝑅)    &   𝐶 = (𝑇 <bag 𝐼)    &   𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))    &    = (le‘𝑂)       (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
 
Theoremopsrtoslem2 19306* Lemma for opsrtos 19307. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Toset)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))    &   (𝜑𝑇 We 𝐼)    &   𝑆 = (𝐼 mPwSer 𝑅)    &   𝐵 = (Base‘𝑆)    &    < = (lt‘𝑅)    &   𝐶 = (𝑇 <bag 𝐼)    &   𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))    &    = (le‘𝑂)       (𝜑𝑂 ∈ Toset)
 
Theoremopsrtos 19307 The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Toset)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))    &   (𝜑𝑇 We 𝐼)       (𝜑𝑂 ∈ Toset)
 
Theoremopsrso 19308 The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Toset)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))    &   (𝜑𝑇 We 𝐼)    &    = (lt‘𝑂)    &   𝐵 = (Base‘𝑂)       (𝜑 Or 𝐵)
 
Theoremopsrcrng 19309 The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))       (𝜑𝑂 ∈ CRing)
 
Theoremopsrassa 19310 The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑇 ⊆ (𝐼 × 𝐼))       (𝜑𝑂 ∈ AssAlg)
 
Theoremmplrcl 19311 Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)       (𝑋𝐵𝐼 ∈ V)
 
Theoremmplelsfi 19312 A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑅)    &   (𝜑𝐹𝐵)    &   (𝜑𝑅𝑉)       (𝜑𝐹 finSupp 0 )
 
Theoremmvrf2 19313 The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝑉 = (𝐼 mVar 𝑅)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 ∈ Ring)       (𝜑𝑉:𝐼𝐵)
 
Theoremmplmon2 19314* Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &    · = ( ·𝑠𝑃)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    1 = (1r𝑅)    &    0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐾𝐷)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · (𝑦𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )))
 
Theorempsrbag0 19315* The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼𝑉 → (𝐼 × {0}) ∈ 𝐷)
 
Theorempsrbagsn 19316* A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}       (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
 
Theoremmplascl 19317* Value of the scalar injection into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)    &   𝐴 = (algSc‘𝑃)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐴𝑋) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 )))
 
Theoremmplasclf 19318 The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝐴 = (algSc‘𝑃)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 ∈ Ring)       (𝜑𝐴:𝐾𝐵)
 
Theoremsubrgascl 19319 The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐴 = (algSc‘𝑃)    &   𝐻 = (𝑅s 𝑇)    &   𝑈 = (𝐼 mPoly 𝐻)    &   (𝜑𝐼𝑊)    &   (𝜑𝑇 ∈ (SubRing‘𝑅))    &   𝐶 = (algSc‘𝑈)       (𝜑𝐶 = (𝐴𝑇))
 
Theoremsubrgasclcl 19320 The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐴 = (algSc‘𝑃)    &   𝐻 = (𝑅s 𝑇)    &   𝑈 = (𝐼 mPoly 𝐻)    &   (𝜑𝐼𝑊)    &   (𝜑𝑇 ∈ (SubRing‘𝑅))    &   𝐵 = (Base‘𝑈)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝑋𝐾)       (𝜑 → ((𝐴𝑋) ∈ 𝐵𝑋𝑇))
 
Theoremmplmon2cl 19321* A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &   𝐶 = (Base‘𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 ∈ Ring)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝑋𝐶)    &   (𝜑𝐾𝐷)       (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵)
 
Theoremmplmon2mul 19322* Product of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &   𝐶 = (Base‘𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 ∈ CRing)    &    = (.r𝑃)    &    · = (.r𝑅)    &   (𝜑𝑋𝐷)    &   (𝜑𝑌𝐷)    &   (𝜑𝐹𝐶)    &   (𝜑𝐺𝐶)       (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 )) (𝑦𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋𝑓 + 𝑌), (𝐹 · 𝐺), 0 )))
 
Theoremmplind 19323* Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.)
𝐾 = (Base‘𝑅)    &   𝑉 = (𝐼 mVar 𝑅)    &   𝑌 = (𝐼 mPoly 𝑅)    &    + = (+g𝑌)    &    · = (.r𝑌)    &   𝐶 = (algSc‘𝑌)    &   𝐵 = (Base‘𝑌)    &   ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 + 𝑦) ∈ 𝐻)    &   ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥 · 𝑦) ∈ 𝐻)    &   ((𝜑𝑥𝐾) → (𝐶𝑥) ∈ 𝐻)    &   ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ 𝐻)    &   (𝜑𝑋𝐵)    &   (𝜑𝐼 ∈ V)    &   (𝜑𝑅 ∈ CRing)       (𝜑𝑋𝐻)
 
Theoremmplcoe4 19324* Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &    0 = (0g𝑅)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ (𝑦𝐷 ↦ if(𝑦 = 𝑘, (𝑋𝑘), 0 )))))
 
10.10.2  Polynomial evaluation
 
Syntaxces 19325 Evaluation of a multivariate polynomial in a subring.
class evalSub
 
Syntaxcevl 19326 Evaluation of a multivariate polynomial.
class eval
 
Definitiondf-evls 19327* Define the evaluation map for the polynomial algebra. The function ((𝐼 evalSub 𝑆)‘𝑅):𝑉⟶(𝑆𝑚 (𝑆𝑚 𝐼)) makes sense when 𝐼 is an index set, 𝑆 is a ring, 𝑅 is a subring of 𝑆, and where 𝑉 is the set of polynomials in (𝐼 mPoly 𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments 𝐼𝑆 of the variables to elements of 𝑆 formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015.)
evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))))))
 
Definitiondf-evl 19328* A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015.)
eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
 
Theoremevlslem4 19329* The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑𝑥𝐼) → 𝑋𝐵)    &   ((𝜑𝑦𝐽) → 𝑌𝐵)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)       (𝜑 → ((𝑥𝐼, 𝑦𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥𝐼𝑋) supp 0 ) × ((𝑦𝐽𝑌) supp 0 )))
 
Theorempsrbagfsupp 19330* Finite bags have finite nonzero-support. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.)
𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}       ((𝑋𝐷𝐼𝑉) → 𝑋 finSupp 0)
 
Theorempsrbagev1 19331* A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.)
𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐶 = (Base‘𝑇)    &    · = (.g𝑇)    &    0 = (0g𝑇)    &   (𝜑𝑇 ∈ CMnd)    &   (𝜑𝐵𝐷)    &   (𝜑𝐺:𝐼𝐶)    &   (𝜑𝐼 ∈ V)       (𝜑 → ((𝐵𝑓 · 𝐺):𝐼𝐶 ∧ (𝐵𝑓 · 𝐺) finSupp 0 ))
 
Theorempsrbagev2 19332* Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.)
𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐶 = (Base‘𝑇)    &    · = (.g𝑇)    &    0 = (0g𝑇)    &   (𝜑𝑇 ∈ CMnd)    &   (𝜑𝐵𝐷)    &   (𝜑𝐺:𝐼𝐶)    &   (𝜑𝐼 ∈ V)       (𝜑 → (𝑇 Σg (𝐵𝑓 · 𝐺)) ∈ 𝐶)
 
Theoremevlslem2 19333* A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    · = (.r𝑆)    &    0 = (0g𝑅)    &   𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   (𝜑𝐼 ∈ V)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐸 ∈ (𝑃 GrpHom 𝑆))    &   ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑗𝐷𝑖𝐷))) → (𝐸‘(𝑘𝐷 ↦ if(𝑘 = (𝑗𝑓 + 𝑖), ((𝑥𝑗)(.r𝑅)(𝑦𝑖)), 0 ))) = ((𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑗, (𝑥𝑗), 0 ))) · (𝐸‘(𝑘𝐷 ↦ if(𝑘 = 𝑖, (𝑦𝑖), 0 )))))       ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐸‘(𝑥(.r𝑃)𝑦)) = ((𝐸𝑥) · (𝐸𝑦)))
 
Theoremevlslem6 19334* Lemma for evlseu 19337. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑆)    &   𝐾 = (Base‘𝑅)    &   𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝑇 = (mulGrp‘𝑆)    &    = (.g𝑇)    &    · = (.r𝑆)    &   𝑉 = (𝐼 mVar 𝑅)    &   𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))    &   (𝜑𝐼 ∈ V)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))    &   (𝜑𝐺:𝐼𝐶)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
 
Theoremevlslem3 19335* Lemma for evlseu 19337. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑆)    &   𝐾 = (Base‘𝑅)    &   𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝑇 = (mulGrp‘𝑆)    &    = (.g𝑇)    &    · = (.r𝑆)    &   𝑉 = (𝐼 mVar 𝑅)    &   𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))    &   (𝜑𝐼 ∈ V)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))    &   (𝜑𝐺:𝐼𝐶)    &    0 = (0g𝑅)    &   (𝜑𝐴𝐷)    &   (𝜑𝐻𝐾)       (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴𝑓 𝐺))))
 
Theoremevlslem1 19336* Lemma for evlseu 19337, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑆)    &   𝐾 = (Base‘𝑅)    &   𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝑇 = (mulGrp‘𝑆)    &    = (.g𝑇)    &    · = (.r𝑆)    &   𝑉 = (𝐼 mVar 𝑅)    &   𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))    &   (𝜑𝐼 ∈ V)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))    &   (𝜑𝐺:𝐼𝐶)    &   𝐴 = (algSc‘𝑃)       (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸𝐴) = 𝐹 ∧ (𝐸𝑉) = 𝐺))
 
Theoremevlseu 19337* For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐶 = (Base‘𝑆)    &   𝐴 = (algSc‘𝑃)    &   𝑉 = (𝐼 mVar 𝑅)    &   (𝜑𝐼 ∈ V)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))    &   (𝜑𝐺:𝐼𝐶)       (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
 
Theoremreldmevls 19338 Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Rel dom evalSub
 
Theoremmpfrcl 19339 Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015.)
𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)       (𝑋𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
 
Theoremevlsval 19340* Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015.) (Revised by AV, 18-Sep-2021.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑊 = (𝐼 mPoly 𝑈)    &   𝑉 = (𝐼 mVar 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝑇 = (𝑆s (𝐵𝑚 𝐼))    &   𝐵 = (Base‘𝑆)    &   𝐴 = (algSc‘𝑊)    &   𝑋 = (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥}))    &   𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)))       ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌)))
 
Theoremevlsval2 19341* Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑊 = (𝐼 mPoly 𝑈)    &   𝑉 = (𝐼 mVar 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝑇 = (𝑆s (𝐵𝑚 𝐼))    &   𝐵 = (Base‘𝑆)    &   𝐴 = (algSc‘𝑊)    &   𝑋 = (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥}))    &   𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)))       ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
 
Theoremevlsrhm 19342 Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑊 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝑇 = (𝑆s (𝐵𝑚 𝐼))    &   𝐵 = (Base‘𝑆)       ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))
 
Theoremevlssca 19343 Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑊 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑆)    &   𝐴 = (algSc‘𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝑅)       (𝜑 → (𝑄‘(𝐴𝑋)) = ((𝐵𝑚 𝐼) × {𝑋}))
 
Theoremevlsvar 19344* Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑉 = (𝐼 mVar 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝐼)       (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑋)))
 
Theoremevlval 19345 Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
𝑄 = (𝐼 eval 𝑅)    &   𝐵 = (Base‘𝑅)       𝑄 = ((𝐼 evalSub 𝑅)‘𝐵)
 
Theoremevlrhm 19346 The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑄 = (𝐼 eval 𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑊 = (𝐼 mPoly 𝑅)    &   𝑇 = (𝑅s (𝐵𝑚 𝐼))       ((𝐼𝑉𝑅 ∈ CRing) → 𝑄 ∈ (𝑊 RingHom 𝑇))
 
Theoremevlsscasrng 19347 The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑂 = (𝐼 eval 𝑆)    &   𝑊 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝑃 = (𝐼 mPoly 𝑆)    &   𝐵 = (Base‘𝑆)    &   𝐴 = (algSc‘𝑊)    &   𝐶 = (algSc‘𝑃)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝑅)       (𝜑 → (𝑄‘(𝐴𝑋)) = (𝑂‘(𝐶𝑋)))
 
Theoremevlsca 19348 Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019.)
𝑄 = (𝐼 eval 𝑆)    &   𝑊 = (𝐼 mPoly 𝑆)    &   𝐵 = (Base‘𝑆)    &   𝐴 = (algSc‘𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑄‘(𝐴𝑋)) = ((𝐵𝑚 𝐼) × {𝑋}))
 
Theoremevlsvarsrng 19349 The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑂 = (𝐼 eval 𝑆)    &   𝑉 = (𝐼 mVar 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐼𝐴)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝐼)       (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑂‘(𝑉𝑋)))
 
Theoremevlvar 19350* Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019.)
𝑄 = (𝐼 eval 𝑆)    &   𝑉 = (𝐼 mVar 𝑆)    &   𝐵 = (Base‘𝑆)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑋𝐼)       (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑋)))
 
Theoremmpfconst 19351 Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝑅)       (𝜑 → ((𝐵𝑚 𝐼) × {𝑋}) ∈ 𝑄)
 
Theoremmpfproj 19352* Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐽𝐼)       (𝜑 → (𝑓 ∈ (𝐵𝑚 𝐼) ↦ (𝑓𝐽)) ∈ 𝑄)
 
Theoremmpfsubrg 19353 Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by AV, 19-Sep-2021.)
𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)       ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))))
 
Theoremmpff 19354 Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)    &   𝐵 = (Base‘𝑆)       (𝐹𝑄𝐹:(𝐵𝑚 𝐼)⟶𝐵)
 
Theoremmpfaddcl 19355 The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)    &    + = (+g𝑆)       ((𝐹𝑄𝐺𝑄) → (𝐹𝑓 + 𝐺) ∈ 𝑄)
 
Theoremmpfmulcl 19356 The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)    &    · = (.r𝑆)       ((𝐹𝑄𝐺𝑄) → (𝐹𝑓 · 𝐺) ∈ 𝑄)
 
Theoremmpfind 19357* Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.)
𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &    · = (.r𝑆)    &   𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)    &   ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)    &   ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)    &   (𝑥 = ((𝐵𝑚 𝐼) × {𝑓}) → (𝜓𝜒))    &   (𝑥 = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑓)) → (𝜓𝜃))    &   (𝑥 = 𝑓 → (𝜓𝜏))    &   (𝑥 = 𝑔 → (𝜓𝜂))    &   (𝑥 = (𝑓𝑓 + 𝑔) → (𝜓𝜁))    &   (𝑥 = (𝑓𝑓 · 𝑔) → (𝜓𝜎))    &   (𝑥 = 𝐴 → (𝜓𝜌))    &   ((𝜑𝑓𝑅) → 𝜒)    &   ((𝜑𝑓𝐼) → 𝜃)    &   (𝜑𝐴𝑄)       (𝜑𝜌)
 
10.10.3  Additional definitions for (multivariate) polynomials

Remark: There are no theorems using these definitions yet!

 
Syntaxcmhp 19358 Multivariate polynomials.
class mHomP
 
Syntaxcpsd 19359 Power series partial derivative function.
class mPSDer
 
Syntaxcslv 19360 Select a subset of variables in a multivariate polynomial.
class selectVars
 
Syntaxcai 19361 Algebraically independent.
class AlgInd
 
Definitiondf-mhp 19362* Define the subspaces of order- 𝑛 homogeneous polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.)
mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}))
 
Definitiondf-psd 19363* Define the differentiation operation on multivariate polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.)
mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘𝑓 + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
 
Definitiondf-selv 19364* Define the "variable selection" function. The function ((𝐼 selectVars 𝑅)‘𝐽) maps elements of (𝐼 mPoly 𝑅) bijectively onto (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) in the natural way, for example if 𝐼 = {𝑥, 𝑦} and 𝐽 = {𝑦} it would map 1 + 𝑥 + 𝑦 + 𝑥𝑦 ∈ ({𝑥, 𝑦} mPoly ℤ) to (1 + 𝑥) + (1 + 𝑥)𝑦 ∈ ({𝑦} mPoly ({𝑥} mPoly ℤ)). This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015.)
selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (𝑖 mPoly 𝑟) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑠(𝑥 ∈ (Scalar‘𝑠) ↦ (𝑥( ·𝑠𝑠)(1r𝑠))) / 𝑐((((𝑖 evalSub 𝑠)‘(𝑐s 𝑟))‘(𝑐𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar ((𝑖𝑗) mPoly 𝑟))‘𝑥), (𝑐 ∘ (((𝑖𝑗) mVar 𝑟)‘𝑥))))))))
 
Definitiondf-algind 19365* Define the predicate "the set 𝑣 is algebraically independent in the algebra 𝑤". A collection of vectors is algebraically independent if no nontrivial polynomial with elements from the subset evaluates to zero. (Contributed by Mario Carneiro, 21-Mar-2015.)
AlgInd = (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun (𝑓 ∈ (Base‘(𝑣 mPoly (𝑤s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))})
 
10.10.4  Univariate polynomials

According to Wikipedia ("Polynomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Polynomial) "A polynomial in one indeterminate is called a univariate polynomial, a polynomial in more than one indeterminate is called a multivariate polynomial." In this sense univariate polynomials are defined as multivariate polynomials restricted to one indeterminate/polynomial variable in the following, see ply1bascl2 19395.

According to the definition in Wikipedia "a polynomial can either be zero or can be written as the sum of a finite number of nonzero terms. Each term consists of the product of a number - called the coefficient of the term - and a finite number of indeterminates, raised to nonnegative integer powers.". By this, a term of a univariate polynomial (often also called "polynomial term") is the product of a coefficient (usually a member of the underlying ring) and the variable, raised to a nonnegative integer power.

A (univariate) polynomial which has only one term is called (univariate) monomial - therefore, the notions "term" and "monomial" are often used synonymously, see also the definition in [Lang] p. 102. Sometimes, however, a monomial is defined as power product, "a product of powers of variables with nonnegative integer exponents", see Wikipedia ("Monomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Mononomial). In [Lang] p. 101, such terms are called "primitive monomials". To avoid any ambiguity, the notion "primitive monomial" is used for such power products ("x^i") in the following, whereas the synonym for "term" ("ai x^i") will be "scaled monomial".

 
Syntaxcps1 19366 Univariate power series.
class PwSer1
 
Syntaxcv1 19367 The base variable of a univariate power series.
class var1
 
Syntaxcpl1 19368 Univariate polynomials.
class Poly1
 
Syntaxcco1 19369 Coefficient function for a univariate polynomial.
class coe1
 
Syntaxctp1 19370 Convert a univariate polynomial representation to multivariate.
class toPoly1
 
Definitiondf-psr1 19371 Define the algebra of univariate power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
PwSer1 = (𝑟 ∈ V ↦ ((1𝑜 ordPwSer 𝑟)‘∅))
 
Definitiondf-vr1 19372 Define the base element of a univariate power series (the 𝑋 element of the set 𝑅[𝑋] of polynomials and also the 𝑋 in the set 𝑅[[𝑋]] of power series). (Contributed by Mario Carneiro, 8-Feb-2015.)
var1 = (𝑟 ∈ V ↦ ((1𝑜 mVar 𝑟)‘∅))
 
Definitiondf-ply1 19373 Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1𝑜 mPoly 𝑟))))
 
Definitiondf-coe1 19374* Define the coefficient function for a univariate polynomial. (Contributed by Stefan O'Rear, 21-Mar-2015.)
coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1𝑜 × {𝑛}))))
 
Definitiondf-toply1 19375* Define a function which maps a coefficient function for a univariate polynomial to the corresponding polynomial object. (Contributed by Mario Carneiro, 12-Jun-2015.)
toPoly1 = (𝑓 ∈ V ↦ (𝑛 ∈ (ℕ0𝑚 1𝑜) ↦ (𝑓‘(𝑛‘∅))))
 
Theorempsr1baslem 19376 The set of finite bags on 1𝑜 is just the set of all functions from 1𝑜 to 0. (Contributed by Mario Carneiro, 9-Feb-2015.)
(ℕ0𝑚 1𝑜) = {𝑓 ∈ (ℕ0𝑚 1𝑜) ∣ (𝑓 “ ℕ) ∈ Fin}
 
Theorempsr1val 19377 Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑆 = (PwSer1𝑅)       𝑆 = ((1𝑜 ordPwSer 𝑅)‘∅)
 
Theorempsr1crng 19378 The ring of univariate power series is a commutative ring. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑆 = (PwSer1𝑅)       (𝑅 ∈ CRing → 𝑆 ∈ CRing)
 
Theorempsr1assa 19379 The ring of univariate power series is an associative algebra. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑆 = (PwSer1𝑅)       (𝑅 ∈ CRing → 𝑆 ∈ AssAlg)
 
Theorempsr1tos 19380 The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 2-Jun-2015.)
𝑆 = (PwSer1𝑅)       (𝑅 ∈ Toset → 𝑆 ∈ Toset)
 
Theorempsr1bas2 19381 The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑆 = (PwSer1𝑅)    &   𝐵 = (Base‘𝑆)    &   𝑂 = (1𝑜 mPwSer 𝑅)       𝐵 = (Base‘𝑂)
 
Theorempsr1bas 19382 The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑆 = (PwSer1𝑅)    &   𝐵 = (Base‘𝑆)    &   𝐾 = (Base‘𝑅)       𝐵 = (𝐾𝑚 (ℕ0𝑚 1𝑜))
 
Theoremvr1val 19383 The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1𝑜 = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
𝑋 = (var1𝑅)       𝑋 = ((1𝑜 mVar 𝑅)‘∅)
 
Theoremvr1cl2 19384 The variable 𝑋 is a member of the power series algebra 𝑅[[𝑋]]. (Contributed by Mario Carneiro, 8-Feb-2015.)
𝑋 = (var1𝑅)    &   𝑆 = (PwSer1𝑅)    &   𝐵 = (Base‘𝑆)       (𝑅 ∈ Ring → 𝑋𝐵)
 
Theoremply1val 19385 The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝑃 = (Poly1𝑅)    &   𝑆 = (PwSer1𝑅)       𝑃 = (𝑆s (Base‘(1𝑜 mPoly 𝑅)))
 
Theoremply1bas 19386 The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝑃 = (Poly1𝑅)    &   𝑆 = (PwSer1𝑅)    &   𝑈 = (Base‘𝑃)       𝑈 = (Base‘(1𝑜 mPoly 𝑅))
 
Theoremply1lss 19387 Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝑃 = (Poly1𝑅)    &   𝑆 = (PwSer1𝑅)    &   𝑈 = (Base‘𝑃)       (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆))
 
Theoremply1subrg 19388 Univariate polynomials form a subring of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝑃 = (Poly1𝑅)    &   𝑆 = (PwSer1𝑅)    &   𝑈 = (Base‘𝑃)       (𝑅 ∈ Ring → 𝑈 ∈ (SubRing‘𝑆))
 
Theoremply1crng 19389 The ring of univariate polynomials is a commutative ring. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝑃 = (Poly1𝑅)       (𝑅 ∈ CRing → 𝑃 ∈ CRing)
 
Theoremply1assa 19390 The ring of univariate polynomials is an associative algebra. (Contributed by Mario Carneiro, 9-Feb-2015.)
𝑃 = (Poly1𝑅)       (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
 
Theorempsr1bascl 19391 A univariate power series is a multivariate power series on one index. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑃 = (PwSer1𝑅)    &   𝐵 = (Base‘𝑃)       (𝐹𝐵𝐹 ∈ (Base‘(1𝑜 mPwSer 𝑅)))
 
Theorempsr1basf 19392 Univariate power series base set elements are functions. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑃 = (PwSer1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)       (𝐹𝐵𝐹:(ℕ0𝑚 1𝑜)⟶𝐾)
 
Theoremply1basf 19393 Univariate polynomial base set elements are functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)       (𝐹𝐵𝐹:(ℕ0𝑚 1𝑜)⟶𝐾)
 
Theoremply1bascl 19394 A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)       (𝐹𝐵𝐹 ∈ (Base‘(PwSer1𝑅)))
 
Theoremply1bascl2 19395 A univariate polynomial is a multivariate polynomial on one index. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)       (𝐹𝐵𝐹 ∈ (Base‘(1𝑜 mPoly 𝑅)))
 
Theoremcoe1fval 19396* Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝐴 = (coe1𝐹)       (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1𝑜 × {𝑛}))))
 
Theoremcoe1fv 19397 Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝐴 = (coe1𝐹)       ((𝐹𝑉𝑁 ∈ ℕ0) → (𝐴𝑁) = (𝐹‘(1𝑜 × {𝑁})))
 
Theoremfvcoe1 19398 Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝐴 = (coe1𝐹)       ((𝐹𝑉𝑋 ∈ (ℕ0𝑚 1𝑜)) → (𝐹𝑋) = (𝐴‘(𝑋‘∅)))
 
Theoremcoe1fval3 19399* Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝐴 = (coe1𝐹)    &   𝐵 = (Base‘𝑃)    &   𝑃 = (PwSer1𝑅)    &   𝐺 = (𝑦 ∈ ℕ0 ↦ (1𝑜 × {𝑦}))       (𝐹𝐵𝐴 = (𝐹𝐺))
 
Theoremcoe1f2 19400 Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝐴 = (coe1𝐹)    &   𝐵 = (Base‘𝑃)    &   𝑃 = (PwSer1𝑅)    &   𝐾 = (Base‘𝑅)       (𝐹𝐵𝐴:ℕ0𝐾)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >