HomeHome Metamath Proof Explorer
Theorem List (p. 262 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 26101-26200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem0spth 26101 A pair of an empty set (of edges) and a second set (of vertices) is a simple path if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(((𝑉𝑋𝐸𝑌) ∧ 𝑃𝑍) → (∅(𝑉 SPaths 𝐸)𝑃𝑃:(0...0)⟶𝑉))
 
Theorempthistrl 26102 A path is a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.)
(𝐹(𝑉 Paths 𝐸)𝑃𝐹(𝑉 Trails 𝐸)𝑃)
 
Theoremspthispth 26103 A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.)
(𝐹(𝑉 SPaths 𝐸)𝑃𝐹(𝑉 Paths 𝐸)𝑃)
 
Theorempthdepisspth 26104 A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017.)
((𝐹(𝑉 Paths 𝐸)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) → 𝐹(𝑉 SPaths 𝐸)𝑃)
 
Theorempthon 26105* The set of paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 PathOn 𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 Paths 𝐸)𝑝)})
 
Theoremispthon 26106 Properties of a pair of functions to be a path between two given vertices(in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉 PathOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃𝐹(𝑉 Paths 𝐸)𝑃)))
 
Theorempthonprop 26107 Properties of a path between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.)
(𝐹(𝐴(𝑉 PathOn 𝐸)𝐵)𝑃 → (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃𝐹(𝑉 Paths 𝐸)𝑃)))
 
Theorempthonispth 26108 A path between two vertices is a path. (Contributed by Alexander van der Vekens, 12-Dec-2017.)
(𝐹(𝐴(𝑉 PathOn 𝐸)𝐵)𝑃𝐹(𝑉 Paths 𝐸)𝑃)
 
Theorem0pthon 26109 A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
(((𝑉𝑋𝐸𝑌) ∧ 𝑁𝑉) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → ∅(𝑁(𝑉 PathOn 𝐸)𝑁)𝑃))
 
Theorem0pthon1 26110 A path of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
(((𝑉𝑋𝐸𝑌) ∧ 𝑁𝑉) → ∅(𝑁(𝑉 PathOn 𝐸)𝑁){⟨0, 𝑁⟩})
 
Theorem0pthonv 26111* For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
((𝑉𝑋𝐸𝑌) → (𝑁𝑉 → ∃𝑓𝑝 𝑓(𝑁(𝑉 PathOn 𝐸)𝑁)𝑝))
 
Theoremspthon 26112* The set of simple paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 SPathOn 𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑝𝑓(𝑉 SPaths 𝐸)𝑝)})
 
Theoremisspthon 26113 Properties of a pair of functions to be a simple path between two given vertices(in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃𝐹(𝑉 SPaths 𝐸)𝑃)))
 
Theoremisspthonpth 26114 Properties of a pair of functions to be a simple path between two given vertices(in an undirected graph). (Contributed by Alexander van der Vekens, 9-Mar-2018.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
 
Theoremspthonprp 26115 Properties of a simple path between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.)
(𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃 → (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃𝐹(𝑉 SPaths 𝐸)𝑃)))
 
Theoremspthonisspth 26116 A simple path between to vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
(𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃𝐹(𝑉 SPaths 𝐸)𝑃)
 
Theoremspthonepeq 26117 The endpoints of a simple path between two vertices are equal if and only if the path is of length 0 (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.)
(𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
 
Theoremconstr1trl 26118 Construction of a trail from one given edge in a graph. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
𝐹 = {⟨0, 𝑖⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}       (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐸𝑖) = {𝐴, 𝐵}) → 𝐹(𝑉 Trails 𝐸)𝑃)
 
Theorem1pthonlem1 26119 Lemma 1 for 1pthon 26121. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
𝐹 = {⟨0, 𝑖⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}       Fun (𝑃 ↾ (1..^(#‘𝐹)))
 
Theorem1pthonlem2 26120 Lemma 2 for 1pthon 26121. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
𝐹 = {⟨0, 𝑖⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}       ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅
 
Theorem1pthon 26121 A path of length 1 from one vertex to another vertex. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐸𝑖) = {𝐴, 𝐵}) → {⟨0, 𝑖⟩} (𝐴(𝑉 PathOn 𝐸)𝐵){⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
 
Theorem1pthoncl 26122 A path of length 1 from one vertex to another vertex. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐼 ∈ V ∧ (𝐸𝐼) = {𝐴, 𝐵})) → {⟨0, 𝐼⟩} (𝐴(𝑉 PathOn 𝐸)𝐵){⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
 
Theorem1pthon2v 26123* For each pair of adjacent vertices there is a path of length 1 from one vertex to the other. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵}) → ∃𝑓𝑝 𝑓(𝐴(𝑉 PathOn 𝐸)𝐵)𝑝)
 
Theoremconstr2spthlem1 26124 Lemma 1 for constr2spth 26130. (Contributed by Alexander van der Vekens, 31-Jan-2018.)
𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → Fun 𝑃)
 
Theorem2pthlem1 26125 Lemma 1 for constr2pth 26131. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (Revised by Alexander van der Vekens, 31-Jan-2018.)
𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       ((𝐴𝑉𝐵𝑉𝐶𝑉) → Fun (𝑃 ↾ (1..^2)))
 
Theorem2pthlem2 26126 Lemma 2 for constr2pth 26131. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (Revised by Alexander van der Vekens, 18-Feb-2018.)
𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑃 “ {0, 2}) ∩ (𝑃 “ (1..^2))) = ∅)
 
Theorem2wlklem1 26127* Lemma 1 for constr2wlk 26128. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
(𝐼𝑈𝐽𝑊)    &   𝐹 = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       ((((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ ((𝐸𝐼) = {𝐴, 𝐵} ∧ (𝐸𝐽) = {𝐵, 𝐶})) → ∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
 
Theoremconstr2wlk 26128 Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018.)
(𝐼𝑈𝐽𝑊)    &   𝐹 = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐸𝐼) = {𝐴, 𝐵} ∧ (𝐸𝐽) = {𝐵, 𝐶}) → 𝐹(𝑉 Walks 𝐸)𝑃))
 
Theoremconstr2trl 26129 Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by Alexander van der Vekens, 1-Feb-2018.)
(𝐼𝑈𝐽𝑊)    &   𝐹 = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐼𝐽 ∧ (𝐸𝐼) = {𝐴, 𝐵} ∧ (𝐸𝐽) = {𝐵, 𝐶}) → 𝐹(𝑉 Trails 𝐸)𝑃))
 
Theoremconstr2spth 26130 A simple path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
(𝐼𝑈𝐽𝑊)    &   𝐹 = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐼𝐽 ∧ (𝐸𝐼) = {𝐴, 𝐵} ∧ (𝐸𝐽) = {𝐵, 𝐶}) → 𝐹(𝑉 SPaths 𝐸)𝑃))
 
Theoremconstr2pth 26131 A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by Alexander van der Vekens, 31-Jan-2018.)
(𝐼𝑈𝐽𝑊)    &   𝐹 = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐼𝐽 ∧ (𝐸𝐼) = {𝐴, 𝐵} ∧ (𝐸𝐽) = {𝐵, 𝐶}) → 𝐹(𝑉 Paths 𝐸)𝑃))
 
Theorem2pthon 26132 A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑖𝑗 ∧ (𝐸𝑖) = {𝐴, 𝐵} ∧ (𝐸𝑗) = {𝐵, 𝐶}) → {⟨0, 𝑖⟩, ⟨1, 𝑗⟩} (𝐴(𝑉 PathOn 𝐸)𝐶){⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}))
 
Theorem2pthoncl 26133 A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
((((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝐼 ∈ V ∧ 𝐽 ∈ V) ∧ (𝐼𝐽 ∧ (𝐸𝐼) = {𝐴, 𝐵} ∧ (𝐸𝐽) = {𝐵, 𝐶})) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩} (𝐴(𝑉 PathOn 𝐸)𝐶){⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
 
Theorem2pthon3v 26134* For a vertex adjacent to two other vertices there is a path of length 2 between these other vertices. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
((((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ((𝐸‘{𝐴, 𝐵}) ≠ (𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) → ∃𝑓𝑝(𝑓(𝐴(𝑉 PathOn 𝐸)𝐶)𝑝 ∧ (#‘𝑓) = 2))
 
Theoremredwlklem 26135 Lemma for redwlk 26136. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
((𝐹(𝑉 Walks 𝐸)𝑃 ∧ 1 ≤ (#‘𝐹)) → (#‘(𝐹 ↾ (0..^((#‘𝐹) − 1)))) = ((#‘𝐹) − 1))
 
Theoremredwlk 26136 A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
((𝐹(𝑉 Walks 𝐸)𝑃 ∧ 1 ≤ (#‘𝐹)) → (𝐹 ↾ (0..^((#‘𝐹) − 1)))(𝑉 Walks 𝐸)(𝑃 ↾ (0..^(#‘𝐹))))
 
Theoremwlkdvspthlem 26137* Lemma for wlkdvspth 26138. (Contributed by Alexander van der Vekens, 27-Oct-2017.)
((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))–1-1𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → Fun 𝐹)
 
Theoremwlkdvspth 26138 A walk consisting of different vertices is a simple path. (Contributed by Alexander van der Vekens, 27-Oct-2017.)
((𝐹(𝑉 Walks 𝐸)𝑃 ∧ Fun 𝑃) → 𝐹(𝑉 SPaths 𝐸)𝑃)
 
Theoremusgra2adedgspthlem1 26139 Lemma 1 for usgra2adedgspth 26141. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶}))
 
Theoremusgra2adedgspthlem2 26140 Lemma 2 for usgra2adedgspth 26141. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
(((𝑉 USGrph 𝐸𝐴𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((𝐸‘{𝐴, 𝐵}) ≠ (𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶}))
 
Theoremusgra2adedgspth 26141 In an undirected simple graph, two adjacent edges form a simple path of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       ((𝑉 USGrph 𝐸𝐴𝐶) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → 𝐹(𝑉 SPaths 𝐸)𝑃))
 
Theoremusgra2adedgwlk 26142 In an undirected simple graph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))))
 
Theoremusgra2adedgwlkon 26143 In an undirected simple graph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → 𝐹(𝐴(𝑉 WalkOn 𝐸)𝐶)𝑃))
 
Theoremusgra2adedgwlkonALT 26144 Alternate proof for usgra2adedgwlkon 26143, using usgra2adedgwlk 26142, but with a longer proof! In an undirected simple graph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}    &   𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}       (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → 𝐹(𝐴(𝑉 WalkOn 𝐸)𝐶)𝑃))
 
Theoremusg2wlk 26145* In an undirected simple graph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.)
((𝑉 USGrph 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ∃𝑓𝑝(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
 
Theoremusg2wlkon 26146* In an undirected simple graph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.)
(𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ∃𝑓𝑝 𝑓(𝐴(𝑉 WalkOn 𝐸)𝐶)𝑝))
 
Theoremusgra2wlkspthlem1 26147* Lemma 1 for usgra2wlkspth 26149. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
((𝐹 ∈ Word dom 𝐸𝐸:dom 𝐸1-1→ran 𝐸 ∧ (#‘𝐹) = 2) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵𝐴𝐵) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → Fun 𝐹))
 
Theoremusgra2wlkspthlem2 26148* Lemma 2 for usgra2wlkspth 26149. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
(((𝐹 ∈ Word dom 𝐸 ∧ (#‘𝐹) = 2) ∧ (𝑉 USGrph 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵𝐴𝐵) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → Fun 𝑃))
 
Theoremusgra2wlkspth 26149 In a undirected simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
((𝑉 USGrph 𝐸 ∧ (#‘𝐹) = 2 ∧ 𝐴𝐵) → (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃))
 
17.1.5.3  Circuits and cycles
 
Theoremcrcts 26150* The set of circuits (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
((𝑉𝑋𝐸𝑌) → (𝑉 Circuits 𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Trails 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
 
Theoremcycls 26151* The set of cycles (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
((𝑉𝑋𝐸𝑌) → (𝑉 Cycles 𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Paths 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
 
Theoremiscrct 26152 Properties of a pair of functions to be a circuit (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝑉 Circuits 𝐸)𝑃 ↔ (𝐹(𝑉 Trails 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
 
Theoremiscycl 26153 Properties of a pair of functions to be a cycle (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝑉 Cycles 𝐸)𝑃 ↔ (𝐹(𝑉 Paths 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
 
Theorem0crct 26154 A pair of an empty set (of edges) and a second set (of vertices) is a circuit if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(((𝑉𝑋𝐸𝑌) ∧ 𝑃𝑍) → (∅(𝑉 Circuits 𝐸)𝑃𝑃:(0...0)⟶𝑉))
 
Theorem0cycl 26155 A pair of an empty set (of edges) and a second set (of vertices) is a cycle if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(((𝑉𝑋𝐸𝑌) ∧ 𝑃𝑍) → (∅(𝑉 Cycles 𝐸)𝑃𝑃:(0...0)⟶𝑉))
 
Theoremcrctistrl 26156 A circuit is a trail. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(𝐹(𝑉 Circuits 𝐸)𝑃𝐹(𝑉 Trails 𝐸)𝑃)
 
Theoremcyclispth 26157 A cycle is a path. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(𝐹(𝑉 Cycles 𝐸)𝑃𝐹(𝑉 Paths 𝐸)𝑃)
 
Theoremcycliscrct 26158 A cycle is a circuit. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(𝐹(𝑉 Cycles 𝐸)𝑃𝐹(𝑉 Circuits 𝐸)𝑃)
 
Theoremcyclnspth 26159 A (non trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
(𝐹 ≠ ∅ → (𝐹(𝑉 Cycles 𝐸)𝑃 → ¬ 𝐹(𝑉 SPaths 𝐸)𝑃))
 
Theoremcycliswlk 26160 A cycle is a walk. (Contributed by Alexander van der Vekens, 7-Nov-2017.)
(𝐹(𝑉 Cycles 𝐸)𝑃𝐹(𝑉 Walks 𝐸)𝑃)
 
Theoremcyclispthon 26161 A cycle is a path starting and ending at its first vertex. (Contributed by Alexander van der Vekens, 8-Nov-2017.)
(𝐹(𝑉 Cycles 𝐸)𝑃𝐹((𝑃‘0)(𝑉 PathOn 𝐸)(𝑃‘0))𝑃)
 
Theoremfargshiftlem 26162 If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
((𝑁 ∈ ℕ0𝑋 ∈ (0..^𝑁)) → (𝑋 + 1) ∈ (1...𝑁))
 
Theoremfargshiftfv 26163* If a class is a function, then the values of the "shifted function" correspond to the function values of the class. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (𝑋 ∈ (0..^𝑁) → (𝐺𝑋) = (𝐹‘(𝑋 + 1))))
 
Theoremfargshiftf 26164* If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(#‘𝐹))⟶dom 𝐸)
 
Theoremfargshiftf1 26165* If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(#‘𝐹))–1-1→dom 𝐸)
 
Theoremfargshiftfo 26166* If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(#‘𝐹))–onto→dom 𝐸)
 
Theoremfargshiftfva 26167* The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
𝐺 = (𝑥 ∈ (0..^(#‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))       ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
 
Theoremusgrcyclnl1 26168 In an undirected simple graph (with no loops!) there are no cycles with length 1 (consisting of one edge ). (Contributed by Alexander van der Vekens, 7-Nov-2017.)
((𝑉 USGrph 𝐸𝐹(𝑉 Cycles 𝐸)𝑃) → (#‘𝐹) ≠ 1)
 
Theoremusgrcyclnl2 26169 In an undirected simple graph (with no loops!) there are no cycles with length 2 (consisting of two edges ). (Contributed by Alexander van der Vekens, 9-Nov-2017.)
((𝑉 USGrph 𝐸𝐹(𝑉 Cycles 𝐸)𝑃) → (#‘𝐹) ≠ 2)
 
Theorem3cycl3dv 26170 In a simple graph, the vertices of a 3-cycle are mutually different. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → (𝐴𝐵𝐵𝐶𝐶𝐴))
 
Theoremnvnencycllem 26171 Lemma for 3v3e3cycl1 26172 and 4cycl4v4e 26194. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
(((Fun 𝐸𝐹 ∈ Word dom 𝐸) ∧ (𝑋 ∈ ℕ0𝑋 < (#‘𝐹))) → ((𝐸‘(𝐹𝑋)) = {𝐴, 𝐵} → {𝐴, 𝐵} ∈ ran 𝐸))
 
Theorem3v3e3cycl1 26172* If there is a cycle of length 3 in a graph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
((Fun 𝐸𝐹(𝑉 Cycles 𝐸)𝑃 ∧ (#‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸))
 
Theoremconstr3lem1 26173 Lemma for constr3trl 26187 etc. (Contributed by Alexander van der Vekens, 10-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       (𝐹 ∈ V ∧ 𝑃 ∈ V)
 
Theoremconstr3lem2 26174 Lemma for constr3trl 26187 etc. (Contributed by Alexander van der Vekens, 10-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       (#‘𝐹) = 3
 
Theoremconstr3lem4 26175 Lemma for constr3trl 26187 etc. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐴)))
 
Theoremconstr3lem5 26176 Lemma for constr3trl 26187 etc. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝐹‘0) = (𝐸‘{𝐴, 𝐵}) ∧ (𝐹‘1) = (𝐸‘{𝐵, 𝐶}) ∧ (𝐹‘2) = (𝐸‘{𝐶, 𝐴}))
 
Theoremconstr3lem6 26177 Lemma for constr3pthlem3 26185. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → ({(𝑃‘0), (𝑃‘3)} ∩ {(𝑃‘1), (𝑃‘2)}) = ∅)
 
Theoremconstr3trllem1 26178 Lemma for constr3trl 26187. (Contributed by Alexander van der Vekens, 10-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝐹 ∈ Word dom 𝐸)
 
Theoremconstr3trllem2 26179 Lemma for constr3trl 26187. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → Fun 𝐹)
 
Theoremconstr3trllem3 26180 Lemma for constr3trl 26187. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝑃:(0...(#‘𝐹))⟶𝑉)
 
Theoremconstr3trllem4 26181 Lemma for constr3trl 26187. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝑃:(0...3)⟶𝑉)
 
Theoremconstr3trllem5 26182* Lemma for constr3trl 26187. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
 
Theoremconstr3pthlem1 26183 Lemma for constr3pth 26188. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝐵𝑉𝐶𝑊) → (𝑃 ↾ (1..^(#‘𝐹))) = {⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
 
Theoremconstr3pthlem2 26184 Lemma for constr3pth 26188. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) → Fun (𝑃 ↾ (1..^(#‘𝐹))))
 
Theoremconstr3pthlem3 26185 Lemma for constr3pth 26188. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)
 
Theoremconstr3cycllem1 26186 Lemma for constr3cycl 26189. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑃‘0) = (𝑃‘(#‘𝐹)))
 
Theoremconstr3trl 26187 Construction of a trail from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝐹(𝑉 Trails 𝐸)𝑃)
 
Theoremconstr3pth 26188 Construction of a path from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → 𝐹(𝑉 Paths 𝐸)𝑃)
 
Theoremconstr3cycl 26189 Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → (𝐹(𝑉 Cycles 𝐸)𝑃 ∧ (#‘𝐹) = 3))
 
Theoremconstr3cyclp 26190 Construction of a 3-cycle from three given edges in a graph, containing an endpoint of one of these edges. (Contributed by Alexander van der Vekens, 17-Nov-2017.)
𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩, ⟨2, (𝐸‘{𝐶, 𝐴})⟩}    &   𝑃 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐴⟩})       ((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → (𝐹(𝑉 Cycles 𝐸)𝑃 ∧ (#‘𝐹) = 3 ∧ (𝑃‘0) = 𝐴))
 
Theoremconstr3cyclpe 26191* If there are three (different) vertices in a graph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.)
((𝑉 USGrph 𝐸 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸 ∧ {𝐶, 𝐴} ∈ ran 𝐸)) → ∃𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
 
Theorem3v3e3cycl2 26192* If there are three (different) vertices in a graph which are mutually connected by edges, there is a 3-cycle in the graph. (Contributed by Alexander van der Vekens, 14-Nov-2017.)
(𝑉 USGrph 𝐸 → (∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸) → ∃𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3)))
 
Theorem3v3e3cycl 26193* If and only if there is a 3-cycle in a graph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017.)
(𝑉 USGrph 𝐸 → (∃𝑓𝑝(𝑓(𝑉 Cycles 𝐸)𝑝 ∧ (#‘𝑓) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸 ∧ {𝑐, 𝑎} ∈ ran 𝐸)))
 
Theorem4cycl4v4e 26194* If there is a cycle of length 4 in a graph, there are four (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
((Fun 𝐸𝐹(𝑉 Cycles 𝐸)𝑃 ∧ (#‘𝐹) = 4) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))
 
Theorem4cycl4dv 26195 In a simple graph, the vertices of a 4-cycle are mutually different. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun 𝐹 ∧ (#‘𝐹) = 4)) → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → ((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)))))
 
Theorem4cycl4dv4e 26196* If there is a cycle of length 4 in a graph, there are four (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
((𝑉 USGrph 𝐸𝐹(𝑉 Cycles 𝐸)𝑃 ∧ (#‘𝐹) = 4) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 ((({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))))
 
17.1.5.4  Connected graphs
 
Syntaxcconngra 26197 Extend class notation with connected graphs.
class ConnGrph
 
Definitiondf-conngra 26198* Define the class of all connected graphs. A graph (or, more generally, any pair representing a structure consisting of "vertices" and "edges") is called connected if there is a path between every pair of (distinct) vertices. The distinctness of the vertices is not necessary for the definition, because there is always a path (of length 0) from a vertex to itself, see 0pthonv 26111 and dfconngra1 26199. (Contributed by Alexander van der Vekens, 2-Dec-2017.)
ConnGrph = {⟨𝑣, 𝑒⟩ ∣ ∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(𝑣 PathOn 𝑒)𝑛)𝑝}
 
Theoremdfconngra1 26199* Alternative definition of the class of all connected graphs, requiring paths between distinct vertices. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
ConnGrph = {⟨𝑣, 𝑒⟩ ∣ ∀𝑘𝑣𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(𝑣 PathOn 𝑒)𝑛)𝑝}
 
Theoremisconngra 26200* The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.)
((𝑉𝑋𝐸𝑌) → (𝑉 ConnGrph 𝐸 ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(𝑉 PathOn 𝐸)𝑛)𝑝))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >