Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfcjust Structured version   Visualization version   GIF version

Theorem bj-nfcjust 32044
 Description: Remove dependency on ax-ext 2590 (and df-cleq 2603 and ax-13 2234) from nfcjust 2739. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfcjust (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem bj-nfcjust
StepHypRef Expression
1 nfv 1830 . . 3 𝑥 𝑦 = 𝑧
2 bj-eleq1w 32040 . . 3 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
31, 2nfbidf 2079 . 2 (𝑦 = 𝑧 → (Ⅎ𝑥 𝑦𝐴 ↔ Ⅎ𝑥 𝑧𝐴))
43bj-cbvalvv 31920 1 (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195  ∀wal 1473  Ⅎwnf 1699   ∈ wcel 1977 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-nf 1701  df-clel 2606 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator