Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcvf2 | Structured version Visualization version GIF version |
Description: If 𝑥 and 𝑦 are distinct, then 𝑦 is not free in 𝑥. (Contributed by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
nfcvf2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvf 2774 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
2 | 1 | naecoms 2301 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1473 Ⅎwnfc 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-cleq 2603 df-clel 2606 df-nfc 2740 |
This theorem is referenced by: dfid3 4954 oprabid 6576 axrepndlem1 9293 axrepndlem2 9294 axrepnd 9295 axunnd 9297 axpowndlem3 9300 axpowndlem4 9301 axpownd 9302 axregndlem2 9304 axinfndlem1 9306 axinfnd 9307 axacndlem4 9311 axacndlem5 9312 axacnd 9313 bj-nfcsym 32079 |
Copyright terms: Public domain | W3C validator |