 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpass Structured version   Visualization version   GIF version

Theorem tpass 4231
 Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
tpass {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶})

Proof of Theorem tpass
StepHypRef Expression
1 df-tp 4130 . 2 {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴})
2 tprot 4228 . 2 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
3 uncom 3719 . 2 ({𝐴} ∪ {𝐵, 𝐶}) = ({𝐵, 𝐶} ∪ {𝐴})
41, 2, 33eqtr4i 2642 1 {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶})
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∪ cun 3538  {csn 4125  {cpr 4127  {ctp 4129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-sn 4126  df-pr 4128  df-tp 4130 This theorem is referenced by:  qdassr  4233  en3  8082  wuntp  9412  ex-pw  26678
 Copyright terms: Public domain W3C validator