Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raldifsnb | Structured version Visualization version GIF version |
Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
raldifsnb | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4141 | . . . . . 6 ⊢ (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌) | |
2 | nnel 2892 | . . . . . 6 ⊢ (¬ 𝑥 ∉ {𝑌} ↔ 𝑥 ∈ {𝑌}) | |
3 | nne 2786 | . . . . . 6 ⊢ (¬ 𝑥 ≠ 𝑌 ↔ 𝑥 = 𝑌) | |
4 | 1, 2, 3 | 3bitr4ri 292 | . . . . 5 ⊢ (¬ 𝑥 ≠ 𝑌 ↔ ¬ 𝑥 ∉ {𝑌}) |
5 | 4 | con4bii 310 | . . . 4 ⊢ (𝑥 ≠ 𝑌 ↔ 𝑥 ∉ {𝑌}) |
6 | 5 | imbi1i 338 | . . 3 ⊢ ((𝑥 ≠ 𝑌 → 𝜑) ↔ (𝑥 ∉ {𝑌} → 𝜑)) |
7 | 6 | ralbii 2963 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∉ {𝑌} → 𝜑)) |
8 | raldifb 3712 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ {𝑌} → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) | |
9 | 7, 8 | bitri 263 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∉ wnel 2781 ∀wral 2896 ∖ cdif 3537 {csn 4125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-v 3175 df-dif 3543 df-sn 4126 |
This theorem is referenced by: dff14b 6428 |
Copyright terms: Public domain | W3C validator |