Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12i Structured version   Visualization version   GIF version

Theorem preq12i 4217
 Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1i.1 𝐴 = 𝐵
preq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
preq12i {𝐴, 𝐶} = {𝐵, 𝐷}

Proof of Theorem preq12i
StepHypRef Expression
1 preq1i.1 . 2 𝐴 = 𝐵
2 preq12i.2 . 2 𝐶 = 𝐷
3 preq12 4214 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷})
41, 2, 3mp2an 704 1 {𝐴, 𝐶} = {𝐵, 𝐷}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  {cpr 4127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-sn 4126  df-pr 4128 This theorem is referenced by:  grpbasex  15819  grpplusgx  15820  indistpsx  20624  lgsdir2lem5  24854  wlkntrllem2  26090  clwwlkgt0  26299  tgrpset  35051  1wlk2v2elem2  41323  zlmodzxzadd  41929  zlmodzxzequa  42079  zlmodzxzequap  42082
 Copyright terms: Public domain W3C validator