MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12i Structured version   Unicode version

Theorem preq12i 4070
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1i.1  |-  A  =  B
preq12i.2  |-  C  =  D
Assertion
Ref Expression
preq12i  |-  { A ,  C }  =  { B ,  D }

Proof of Theorem preq12i
StepHypRef Expression
1 preq1i.1 . 2  |-  A  =  B
2 preq12i.2 . 2  |-  C  =  D
3 preq12 4067 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  { A ,  C }  =  { B ,  D } )
41, 2, 3mp2an 672 1  |-  { A ,  C }  =  { B ,  D }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370   {cpr 3990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3080  df-un 3444  df-sn 3989  df-pr 3991
This theorem is referenced by:  grpbasex  14404  grpplusgx  14405  indistpsx  18756  lgsdir2lem5  22809  wlkntrllem2  23638  clwwlkgt0  30605  zlmodzxzadd  30926  zlmodzxzequa  31193  zlmodzxzequap  31196  tgrpset  34752
  Copyright terms: Public domain W3C validator