MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sssn Structured version   Visualization version   GIF version

Theorem sssn 4298
Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
sssn (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))

Proof of Theorem sssn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 3889 . . . . . . 7 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
2 ssel 3562 . . . . . . . . . . 11 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
3 elsni 4142 . . . . . . . . . . 11 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
42, 3syl6 34 . . . . . . . . . 10 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 = 𝐵))
5 eleq1 2676 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
64, 5syl6 34 . . . . . . . . 9 (𝐴 ⊆ {𝐵} → (𝑥𝐴 → (𝑥𝐴𝐵𝐴)))
76ibd 257 . . . . . . . 8 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝐵𝐴))
87exlimdv 1848 . . . . . . 7 (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥𝐴𝐵𝐴))
91, 8syl5bi 231 . . . . . 6 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵𝐴))
10 snssi 4280 . . . . . 6 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
119, 10syl6 34 . . . . 5 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴))
1211anc2li 578 . . . 4 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)))
13 eqss 3583 . . . 4 (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))
1412, 13syl6ibr 241 . . 3 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵}))
1514orrd 392 . 2 (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
16 0ss 3924 . . . 4 ∅ ⊆ {𝐵}
17 sseq1 3589 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵}))
1816, 17mpbiri 247 . . 3 (𝐴 = ∅ → 𝐴 ⊆ {𝐵})
19 eqimss 3620 . . 3 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵})
2018, 19jaoi 393 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})
2115, 20impbii 198 1 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wss 3540  c0 3874  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126
This theorem is referenced by:  eqsn  4301  eqsnOLD  4302  snsssn  4312  pwsn  4366  frsn  5112  foconst  6039  fin1a2lem12  9116  fpwwe2lem13  9343  gsumval2  17103  0top  20598  minveclem4a  23009  uvtx01vtx  26020  locfinref  29236  ordcmp  31616  uneqsn  37341  uvtxa01vtx0  40623
  Copyright terms: Public domain W3C validator