Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsspwg Structured version   Visualization version   GIF version

Theorem prsspwg 4295
 Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
Assertion
Ref Expression
prsspwg ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem prsspwg
StepHypRef Expression
1 prssg 4290 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶))
2 elpwg 4116 . . 3 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐶𝐴𝐶))
3 elpwg 4116 . . 3 (𝐵𝑊 → (𝐵 ∈ 𝒫 𝐶𝐵𝐶))
42, 3bi2anan9 913 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ (𝐴𝐶𝐵𝐶)))
51, 4bitr3d 269 1 ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977   ⊆ wss 3540  𝒫 cpw 4108  {cpr 4127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-in 3547  df-ss 3554  df-pw 4110  df-sn 4126  df-pr 4128 This theorem is referenced by:  prsspw  4316
 Copyright terms: Public domain W3C validator