Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznnring Structured version   Visualization version   GIF version

Theorem cznnring 41748
Description: The ring constructed from a ℤ/n structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
cznrng.0 0 = (0g𝑌)
Assertion
Ref Expression
cznnring ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦   𝑥, 0 ,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem cznnring
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . . 7 (mulGrp‘𝑋) = (mulGrp‘𝑋)
2 cznrng.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 cznrng.b . . . . . . . 8 𝐵 = (Base‘𝑌)
4 cznrng.x . . . . . . . 8 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
52, 3, 4cznrnglem 41745 . . . . . . 7 𝐵 = (Base‘𝑋)
61, 5mgpbas 18318 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑋))
74fveq2i 6106 . . . . . . . 8 (mulGrp‘𝑋) = (mulGrp‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
8 fvex 6113 . . . . . . . . . 10 (ℤ/nℤ‘𝑁) ∈ V
92, 8eqeltri 2684 . . . . . . . . 9 𝑌 ∈ V
10 fvex 6113 . . . . . . . . . . 11 (Base‘𝑌) ∈ V
113, 10eqeltri 2684 . . . . . . . . . 10 𝐵 ∈ V
1211, 11mpt2ex 7136 . . . . . . . . 9 (𝑥𝐵, 𝑦𝐵𝐶) ∈ V
13 mulrid 15822 . . . . . . . . . 10 .r = Slot (.r‘ndx)
1413setsid 15742 . . . . . . . . 9 ((𝑌 ∈ V ∧ (𝑥𝐵, 𝑦𝐵𝐶) ∈ V) → (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)))
159, 12, 14mp2an 704 . . . . . . . 8 (𝑥𝐵, 𝑦𝐵𝐶) = (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
167, 15mgpplusg 18316 . . . . . . 7 (𝑥𝐵, 𝑦𝐵𝐶) = (+g‘(mulGrp‘𝑋))
1716eqcomi 2619 . . . . . 6 (+g‘(mulGrp‘𝑋)) = (𝑥𝐵, 𝑦𝐵𝐶)
18 simpr 476 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝐶𝐵)
19 eluz2 11569 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
20 1lt2 11071 . . . . . . . . . 10 1 < 2
21 1red 9934 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 1 ∈ ℝ)
22 2re 10967 . . . . . . . . . . . . . . 15 2 ∈ ℝ
2322a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 2 ∈ ℝ)
24 zre 11258 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
25 ltletr 10008 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2621, 23, 24, 25syl3anc 1318 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁))
2726expcomd 453 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁)))
2827a1i 11 . . . . . . . . . . 11 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → (1 < 2 → 1 < 𝑁))))
29283imp 1249 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 → 1 < 𝑁))
3020, 29mpi 20 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
3119, 30sylbi 206 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
32 eluz2nn 11602 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
332, 3znhash 19726 . . . . . . . . 9 (𝑁 ∈ ℕ → (#‘𝐵) = 𝑁)
3432, 33syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (#‘𝐵) = 𝑁)
3531, 34breqtrrd 4611 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 1 < (#‘𝐵))
3635adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 1 < (#‘𝐵))
376, 17, 18, 36copisnmnd 41599 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → (mulGrp‘𝑋) ∉ Mnd)
38 df-nel 2783 . . . . 5 ((mulGrp‘𝑋) ∉ Mnd ↔ ¬ (mulGrp‘𝑋) ∈ Mnd)
3937, 38sylib 207 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (mulGrp‘𝑋) ∈ Mnd)
4039intn3an2d 1435 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
41 eqid 2610 . . . 4 (+g𝑋) = (+g𝑋)
424eqcomi 2619 . . . . 5 (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩) = 𝑋
4342fveq2i 6106 . . . 4 (.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)) = (.r𝑋)
445, 1, 41, 43isring 18374 . . 3 (𝑋 ∈ Ring ↔ (𝑋 ∈ Grp ∧ (mulGrp‘𝑋) ∈ Mnd ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))(𝑏(+g𝑋)𝑐)) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑏)(+g𝑋)(𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)) ∧ ((𝑎(+g𝑋)𝑏)(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐) = ((𝑎(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)(+g𝑋)(𝑏(.r‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))𝑐)))))
4540, 44sylnibr 318 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → ¬ 𝑋 ∈ Ring)
46 df-nel 2783 . 2 (𝑋 ∉ Ring ↔ ¬ 𝑋 ∈ Ring)
4745, 46sylibr 223 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wnel 2781  wral 2896  Vcvv 3173  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  cr 9814  1c1 9816   < clt 9953  cle 9954  cn 10897  2c2 10947  cz 11254  cuz 11563  #chash 12979  ndxcnx 15692   sSet csts 15693  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  Mndcmnd 17117  Grpcgrp 17245  mulGrpcmgp 18312  Ringcrg 18370  ℤ/nczn 19670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-hash 12980  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator