Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lidlmmgm | Structured version Visualization version GIF version |
Description: The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
lidlabl.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
lidlabl.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
Ref | Expression |
---|---|
lidlmmgm | ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlabl.l | . . . . . . . 8 ⊢ 𝐿 = (LIdeal‘𝑅) | |
2 | lidlabl.i | . . . . . . . 8 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
3 | 1, 2 | lidlbas 41713 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
4 | eleq1a 2683 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿)) | |
5 | 3, 4 | mpd 15 | . . . . . 6 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ∈ 𝐿) |
6 | 5 | anim2i 591 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿)) |
7 | 6 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿)) |
8 | 1, 2 | lidlssbas 41712 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (Base‘𝐼) ⊆ (Base‘𝑅)) |
10 | 9 | sseld 3567 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
11 | 10 | com12 32 | . . . . . 6 ⊢ (𝑎 ∈ (Base‘𝐼) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝑎 ∈ (Base‘𝑅))) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝑎 ∈ (Base‘𝑅))) |
13 | 12 | impcom 445 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘𝑅)) |
14 | simprr 792 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘𝐼)) | |
15 | eqid 2610 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2610 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
17 | 1, 15, 16 | lidlmcl 19038 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (Base‘𝐼) ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
18 | 7, 13, 14, 17 | syl12anc 1316 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
19 | 18 | ralrimivva 2954 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
20 | fvex 6113 | . . . 4 ⊢ (mulGrp‘𝐼) ∈ V | |
21 | eqid 2610 | . . . . . 6 ⊢ (mulGrp‘𝐼) = (mulGrp‘𝐼) | |
22 | eqid 2610 | . . . . . 6 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
23 | 21, 22 | mgpbas 18318 | . . . . 5 ⊢ (Base‘𝐼) = (Base‘(mulGrp‘𝐼)) |
24 | eqid 2610 | . . . . . 6 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
25 | 21, 24 | mgpplusg 18316 | . . . . 5 ⊢ (.r‘𝐼) = (+g‘(mulGrp‘𝐼)) |
26 | 23, 25 | ismgm 17066 | . . . 4 ⊢ ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
27 | 20, 26 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
28 | 2, 16 | ressmulr 15829 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
29 | 28 | eqcomd 2616 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
30 | 29 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (.r‘𝐼) = (.r‘𝑅)) |
31 | 30 | oveqdr 6573 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝐼)𝑏) = (𝑎(.r‘𝑅)𝑏)) |
32 | 31 | eleq1d 2672 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
33 | 32 | 2ralbidva 2971 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
34 | 27, 33 | bitrd 267 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
35 | 19, 34 | mpbird 246 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ⊆ wss 3540 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 ↾s cress 15696 .rcmulr 15769 Mgmcmgm 17063 mulGrpcmgp 18312 Ringcrg 18370 LIdealclidl 18991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-mgp 18313 df-ur 18325 df-ring 18372 df-subrg 18601 df-lmod 18688 df-lss 18754 df-sra 18993 df-rgmod 18994 df-lidl 18995 |
This theorem is referenced by: lidlmsgrp 41716 |
Copyright terms: Public domain | W3C validator |