Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngmmgm Structured version   Visualization version   GIF version

Theorem 2zrngmmgm 41736
Description: R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngmmgm 𝑀 ∈ Mgm
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngmmgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2614 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3034 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3333 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2614 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3034 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3333 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 zmulcl 11303 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
98ad2ant2r 779 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ ℤ)
10 nfv 1830 . . . . . . . . 9 𝑥 𝑎 ∈ ℤ
11 nfv 1830 . . . . . . . . . . 11 𝑥 𝑏 ∈ ℤ
12 nfre1 2988 . . . . . . . . . . 11 𝑥𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)
1311, 12nfan 1816 . . . . . . . . . 10 𝑥(𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))
14 nfv 1830 . . . . . . . . . 10 𝑥𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)
1513, 14nfim 1813 . . . . . . . . 9 𝑥((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
1610, 15nfim 1813 . . . . . . . 8 𝑥(𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
17 simpll 786 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) → 𝑥 ∈ ℤ)
18 simpl 472 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℤ)
19 zmulcl 11303 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑥 · 𝑏) ∈ ℤ)
2017, 18, 19syl2an 493 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑥 · 𝑏) ∈ ℤ)
21 oveq2 6557 . . . . . . . . . . . 12 (𝑦 = (𝑥 · 𝑏) → (2 · 𝑦) = (2 · (𝑥 · 𝑏)))
2221eqeq2d 2620 . . . . . . . . . . 11 (𝑦 = (𝑥 · 𝑏) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
2322adantl 481 . . . . . . . . . 10 (((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) ∧ 𝑦 = (𝑥 · 𝑏)) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
24 oveq1 6556 . . . . . . . . . . . 12 (𝑎 = (2 · 𝑥) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
2524ad3antlr 763 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
26 2cnd 10970 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 2 ∈ ℂ)
27 zcn 11259 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2827ad3antrrr 762 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑥 ∈ ℂ)
29 zcn 11259 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3029adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
3130adantl 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑏 ∈ ℂ)
3226, 28, 31mulassd 9942 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ((2 · 𝑥) · 𝑏) = (2 · (𝑥 · 𝑏)))
3325, 32eqtrd 2644 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏)))
3420, 23, 33rspcedvd 3289 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
3534exp41 636 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))))
3616, 35rexlimi 3006 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))))
3736impcom 445 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
3837imp 444 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
39 eqeq1 2614 . . . . . . . 8 (𝑧 = (𝑎 · 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑥)))
4039rexbidv 3034 . . . . . . 7 (𝑧 = (𝑎 · 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
4140, 3elrab2 3333 . . . . . 6 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
42 oveq2 6557 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4342eqeq2d 2620 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑎 · 𝑏) = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑦)))
4443cbvrexv 3148 . . . . . . 7 (∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
4544anbi2i 726 . . . . . 6 (((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)) ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
4641, 45bitri 263 . . . . 5 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
479, 38, 46sylanbrc 695 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ 𝐸)
484, 7, 47syl2anb 495 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 · 𝑏) ∈ 𝐸)
4948rgen2a 2960 . 2 𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸
5030even 41721 . . 3 0 ∈ 𝐸
51 2zrngmmgm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
52 2zrngbas.r . . . . . 6 𝑅 = (ℂflds 𝐸)
533, 522zrngbas 41726 . . . . 5 𝐸 = (Base‘𝑅)
5451, 53mgpbas 18318 . . . 4 𝐸 = (Base‘𝑀)
553, 522zrngmul 41735 . . . . 5 · = (.r𝑅)
5651, 55mgpplusg 18316 . . . 4 · = (+g𝑀)
5754, 56ismgmn0 17067 . . 3 (0 ∈ 𝐸 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸))
5850, 57ax-mp 5 . 2 (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸)
5949, 58mpbir 220 1 𝑀 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   · cmul 9820  2c2 10947  cz 11254  s cress 15696  Mgmcmgm 17063  mulGrpcmgp 18312  fldccnfld 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-mgm 17065  df-mgp 18313  df-cnfld 19568
This theorem is referenced by:  2zrngmsgrp  41737
  Copyright terms: Public domain W3C validator