Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrngc2 | Structured version Visualization version GIF version |
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
dfrngc2.c | ⊢ 𝐶 = (RngCat‘𝑈) |
dfrngc2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
dfrngc2.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
dfrngc2.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
dfrngc2.o | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Ref | Expression |
---|---|
dfrngc2 | ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrngc2.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | dfrngc2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | dfrngc2.b | . . 3 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
4 | dfrngc2.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
5 | 1, 2, 3, 4 | rngcval 41754 | . 2 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
6 | eqid 2610 | . . . 4 ⊢ ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻) | |
7 | fvex 6113 | . . . . 5 ⊢ (ExtStrCat‘𝑈) ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) |
9 | inex1g 4729 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
10 | 2, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
11 | 3, 10 | eqeltrd 2688 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
12 | 3, 4 | rnghmresfn 41755 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
13 | 6, 8, 11, 12 | rescval2 16311 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
14 | eqid 2610 | . . . . 5 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
15 | eqidd 2611 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) | |
16 | dfrngc2.o | . . . . . 6 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | |
17 | eqid 2610 | . . . . . . 7 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
18 | 14, 2, 17 | estrccofval 16592 | . . . . . 6 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
19 | 16, 18 | eqtrd 2644 | . . . . 5 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
20 | 14, 2, 15, 19 | estrcval 16587 | . . . 4 ⊢ (𝜑 → (ExtStrCat‘𝑈) = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))〉, 〈(comp‘ndx), · 〉}) |
21 | 2, 2 | jca 553 | . . . . 5 ⊢ (𝜑 → (𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉)) |
22 | eqid 2610 | . . . . . 6 ⊢ (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) | |
23 | 22 | mpt2exg 7134 | . . . . 5 ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ∈ V) |
24 | 21, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ∈ V) |
25 | fvex 6113 | . . . . . 6 ⊢ (comp‘(ExtStrCat‘𝑈)) ∈ V | |
26 | 25 | a1i 11 | . . . . 5 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) |
27 | 16, 26 | eqeltrd 2688 | . . . 4 ⊢ (𝜑 → · ∈ V) |
28 | rnghmfn 41680 | . . . . . . 7 ⊢ RngHomo Fn (Rng × Rng) | |
29 | fnfun 5902 | . . . . . . 7 ⊢ ( RngHomo Fn (Rng × Rng) → Fun RngHomo ) | |
30 | 28, 29 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → Fun RngHomo ) |
31 | sqxpexg 6861 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
32 | 11, 31 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
33 | resfunexg 6384 | . . . . . 6 ⊢ ((Fun RngHomo ∧ (𝐵 × 𝐵) ∈ V) → ( RngHomo ↾ (𝐵 × 𝐵)) ∈ V) | |
34 | 30, 32, 33 | syl2anc 691 | . . . . 5 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) ∈ V) |
35 | 4, 34 | eqeltrd 2688 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ V) |
36 | inss1 3795 | . . . . . 6 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈) |
38 | 3 | sseq1d 3595 | . . . . 5 ⊢ (𝜑 → (𝐵 ⊆ 𝑈 ↔ (𝑈 ∩ Rng) ⊆ 𝑈)) |
39 | 37, 38 | mpbird 246 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
40 | 20, 2, 24, 27, 11, 35, 39 | estrres 16602 | . . 3 ⊢ (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
41 | 13, 40 | eqtrd 2644 | . 2 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
42 | 5, 41 | eqtrd 2644 | 1 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∩ cin 3539 ⊆ wss 3540 {ctp 4129 〈cop 4131 × cxp 5036 ↾ cres 5040 ∘ ccom 5042 Fun wfun 5798 Fn wfn 5799 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 1st c1st 7057 2nd c2nd 7058 ↑𝑚 cmap 7744 ndxcnx 15692 sSet csts 15693 Basecbs 15695 ↾s cress 15696 Hom chom 15779 compcco 15780 ↾cat cresc 16291 ExtStrCatcestrc 16585 Rngcrng 41664 RngHomo crngh 41675 RngCatcrngc 41749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-hom 15793 df-cco 15794 df-resc 16294 df-estrc 16586 df-rnghomo 41677 df-rngc 41751 |
This theorem is referenced by: rngcresringcat 41822 |
Copyright terms: Public domain | W3C validator |