Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcinv Structured version   Visualization version   GIF version

Theorem rngcinv 41773
 Description: An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐶 = (RngCat‘𝑈)
rngcsect.b 𝐵 = (Base‘𝐶)
rngcsect.u (𝜑𝑈𝑉)
rngcsect.x (𝜑𝑋𝐵)
rngcsect.y (𝜑𝑌𝐵)
rngcinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
rngcinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))

Proof of Theorem rngcinv
StepHypRef Expression
1 rngcsect.b . . 3 𝐵 = (Base‘𝐶)
2 rngcinv.n . . 3 𝑁 = (Inv‘𝐶)
3 rngcsect.u . . . 4 (𝜑𝑈𝑉)
4 rngcsect.c . . . . 5 𝐶 = (RngCat‘𝑈)
54rngccat 41770 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . 3 (𝜑𝐶 ∈ Cat)
7 rngcsect.x . . 3 (𝜑𝑋𝐵)
8 rngcsect.y . . 3 (𝜑𝑌𝐵)
9 eqid 2610 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
101, 2, 6, 7, 8, 9isinv 16243 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 eqid 2610 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
124, 1, 3, 7, 8, 11, 9rngcsect 41772 . . . . 5 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
13 df-3an 1033 . . . . 5 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
1412, 13syl6bb 275 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
15 eqid 2610 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
164, 1, 3, 8, 7, 15, 9rngcsect 41772 . . . . 5 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
17 3ancoma 1038 . . . . . 6 ((𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
18 df-3an 1033 . . . . . 6 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
1917, 18bitri 263 . . . . 5 ((𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
2016, 19syl6bb 275 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2114, 20anbi12d 743 . . 3 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
22 anandi 867 . . 3 ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
2321, 22syl6bb 275 . 2 (𝜑 → ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) ↔ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))))
24 simplrl 796 . . . . . 6 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
2524adantl 481 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
2611, 15rnghmf 41689 . . . . . . . . . 10 (𝐹 ∈ (𝑋 RngHomo 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
2715, 11rnghmf 41689 . . . . . . . . . 10 (𝐺 ∈ (𝑌 RngHomo 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
2826, 27anim12i 588 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
2928ad2antlr 759 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)))
30 simpr 476 . . . . . . . . 9 ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
3130adantl 481 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
32 simpr 476 . . . . . . . . 9 (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3332ad2antrl 760 . . . . . . . 8 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
3429, 31, 33jca32 556 . . . . . . 7 (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
3534adantl 481 . . . . . 6 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))))
36 fcof1o 6451 . . . . . . 7 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺))
37 eqcom 2617 . . . . . . . 8 (𝐹 = 𝐺𝐺 = 𝐹)
3837anbi2i 726 . . . . . . 7 ((𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐹 = 𝐺) ↔ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
3936, 38sylib 207 . . . . . 6 (((𝐹:(Base‘𝑋)⟶(Base‘𝑌) ∧ 𝐺:(Base‘𝑌)⟶(Base‘𝑋)) ∧ ((𝐹𝐺) = ( I ↾ (Base‘𝑌)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋)))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
4035, 39syl 17 . . . . 5 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹))
41 anass 679 . . . . 5 (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) ∧ 𝐺 = 𝐹)))
4225, 40, 41sylanbrc 695 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹))
4311, 15isrngim 41694 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
447, 8, 43syl2anc 691 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
4544anbi1d 737 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4645adantr 480 . . . 4 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌)) ∧ 𝐺 = 𝐹)))
4742, 46mpbird 246 . . 3 ((𝜑 ∧ ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹))
4811, 15rngimrnghm 41696 . . . . . 6 (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
4948ad2antrl 760 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
50 isrngisom 41686 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
517, 8, 50syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
52 eleq1 2676 . . . . . . . . . . . 12 (𝐹 = 𝐺 → (𝐹 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5352eqcoms 2618 . . . . . . . . . . 11 (𝐺 = 𝐹 → (𝐹 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5453anbi2d 736 . . . . . . . . . 10 (𝐺 = 𝐹 → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))))
5551, 54sylan9bbr 733 . . . . . . . . 9 ((𝐺 = 𝐹𝜑) → (𝐹 ∈ (𝑋 RngIsom 𝑌) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))))
56 simpr 476 . . . . . . . . 9 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → 𝐺 ∈ (𝑌 RngHomo 𝑋))
5755, 56syl6bi 242 . . . . . . . 8 ((𝐺 = 𝐹𝜑) → (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5857com12 32 . . . . . . 7 (𝐹 ∈ (𝑋 RngIsom 𝑌) → ((𝐺 = 𝐹𝜑) → 𝐺 ∈ (𝑌 RngHomo 𝑋)))
5958expdimp 452 . . . . . 6 ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) → (𝜑𝐺 ∈ (𝑌 RngHomo 𝑋)))
6059impcom 445 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐺 ∈ (𝑌 RngHomo 𝑋))
61 coeq1 5201 . . . . . . 7 (𝐺 = 𝐹 → (𝐺𝐹) = (𝐹𝐹))
6261ad2antll 761 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = (𝐹𝐹))
6311, 15rngimf1o 41695 . . . . . . . 8 (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
6463ad2antrl 760 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → 𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌))
65 f1ococnv1 6078 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6664, 65syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑋)))
6762, 66eqtrd 2644 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺𝐹) = ( I ↾ (Base‘𝑋)))
6849, 60, 67jca31 555 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))))
6951biimpcd 238 . . . . . . 7 (𝐹 ∈ (𝑋 RngIsom 𝑌) → (𝜑 → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7069adantr 480 . . . . . 6 ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹) → (𝜑 → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7170impcom 445 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
72 eleq1 2676 . . . . . . 7 (𝐺 = 𝐹 → (𝐺 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
7372ad2antll 761 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐺 ∈ (𝑌 RngHomo 𝑋) ↔ 𝐹 ∈ (𝑌 RngHomo 𝑋)))
7473anbi2d 736 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐹 ∈ (𝑌 RngHomo 𝑋))))
7571, 74mpbird 246 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
76 coeq2 5202 . . . . . . 7 (𝐺 = 𝐹 → (𝐹𝐺) = (𝐹𝐹))
7776ad2antll 761 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = (𝐹𝐹))
78 f1ococnv2 6076 . . . . . . 7 (𝐹:(Base‘𝑋)–1-1-onto→(Base‘𝑌) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
7964, 78syl 17 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐹) = ( I ↾ (Base‘𝑌)))
8077, 79eqtrd 2644 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (𝐹𝐺) = ( I ↾ (Base‘𝑌)))
8175, 67, 80jca31 555 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌))))
8268, 75, 81jca31 555 . . 3 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)) → ((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))))
8347, 82impbida 873 . 2 (𝜑 → (((((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) ∧ (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ (Base‘𝑋))) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝑌)))) ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))
8410, 23, 833bitrd 293 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583   I cid 4948  ◡ccnv 5037   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  Catccat 16148  Sectcsect 16227  Invcinv 16228   RngHomo crngh 41675   RngIsom crngs 41676  RngCatcrngc 41749 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-hom 15793  df-cco 15794  df-0g 15925  df-cat 16152  df-cid 16153  df-homf 16154  df-sect 16230  df-inv 16231  df-ssc 16293  df-resc 16294  df-subc 16295  df-estrc 16586  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-abl 18019  df-mgp 18313  df-mgmhm 41569  df-rng0 41665  df-rnghomo 41677  df-rngisom 41678  df-rngc 41751 This theorem is referenced by:  rngciso  41774
 Copyright terms: Public domain W3C validator