Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isclwwlkn | Structured version Visualization version GIF version |
Description: Properties of a word to represent a closed walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) |
Ref | Expression |
---|---|
isclwwlkn | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝑊 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑊) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlkn 26295 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → ((𝑉 ClWWalksN 𝐸)‘𝑁) = {𝑤 ∈ (𝑉 ClWWalks 𝐸) ∣ (#‘𝑤) = 𝑁}) | |
2 | 1 | eleq2d 2673 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑉 ClWWalks 𝐸) ∣ (#‘𝑤) = 𝑁})) |
3 | fveq2 6103 | . . . 4 ⊢ (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊)) | |
4 | 3 | eqeq1d 2612 | . . 3 ⊢ (𝑤 = 𝑊 → ((#‘𝑤) = 𝑁 ↔ (#‘𝑊) = 𝑁)) |
5 | 4 | elrab 3331 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ (𝑉 ClWWalks 𝐸) ∣ (#‘𝑤) = 𝑁} ↔ (𝑊 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑊) = 𝑁)) |
6 | 2, 5 | syl6bb 275 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝑊 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑊) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 {crab 2900 ‘cfv 5804 (class class class)co 6549 ℕ0cn0 11169 #chash 12979 ClWWalks cclwwlk 26276 ClWWalksN cclwwlkn 26277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-i2m1 9883 ax-1ne0 9884 ax-rrecex 9887 ax-cnre 9888 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-nn 10898 df-n0 11170 df-clwwlkn 26280 |
This theorem is referenced by: clwwlkn2 26303 clwwlknimp 26304 clwwlkisclwwlkn 26319 clwwlkf 26322 clwwlkext2edg 26330 wwlkext2clwwlk 26331 clwwnisshclwwn 26337 clwlkfclwwlk 26371 clwlkfoclwwlk 26372 extwwlkfablem2 26605 numclwwlkovfel2 26610 numclwwlkovf2ex 26613 numclwwlkovgelim 26616 |
Copyright terms: Public domain | W3C validator |