MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlkinj Structured version   Visualization version   GIF version

Theorem wlkiswwlkinj 26246
Description: Lemma 2 for wlkiswwlkbij2 26249. (Contributed by Alexander van der Vekens, 23-Jul-2018.) (Proof shortened by Alexander van der Vekens, 25-Aug-2018.)
Hypotheses
Ref Expression
wlkiswwlkbij.t 𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}
wlkiswwlkbij.w 𝑊 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}
wlkiswwlkbij.f 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
Assertion
Ref Expression
wlkiswwlkinj ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇1-1𝑊)
Distinct variable groups:   𝐸,𝑝,𝑡,𝑤   𝑁,𝑝,𝑡,𝑤   𝑃,𝑝,𝑡,𝑤   𝑡,𝑇   𝑉,𝑝,𝑡,𝑤   𝑡,𝑊   𝑤,𝐹   𝑤,𝑇
Allowed substitution hints:   𝑇(𝑝)   𝐹(𝑡,𝑝)   𝑊(𝑤,𝑝)

Proof of Theorem wlkiswwlkinj
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 wlkiswwlkbij.t . . . 4 𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}
2 wlkiswwlkbij.w . . . 4 𝑊 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}
3 wlkiswwlkbij.f . . . 4 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
41, 2, 3wlkiswwlkfun 26245 . . 3 ((𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
543adant1 1072 . 2 ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
6 fveq2 6103 . . . . . . 7 (𝑡 = 𝑣 → (2nd𝑡) = (2nd𝑣))
7 fvex 6113 . . . . . . 7 (2nd𝑣) ∈ V
86, 3, 7fvmpt 6191 . . . . . 6 (𝑣𝑇 → (𝐹𝑣) = (2nd𝑣))
9 fveq2 6103 . . . . . . 7 (𝑡 = 𝑤 → (2nd𝑡) = (2nd𝑤))
10 fvex 6113 . . . . . . 7 (2nd𝑤) ∈ V
119, 3, 10fvmpt 6191 . . . . . 6 (𝑤𝑇 → (𝐹𝑤) = (2nd𝑤))
128, 11eqeqan12d 2626 . . . . 5 ((𝑣𝑇𝑤𝑇) → ((𝐹𝑣) = (𝐹𝑤) ↔ (2nd𝑣) = (2nd𝑤)))
1312adantl 481 . . . 4 (((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) ∧ (𝑣𝑇𝑤𝑇)) → ((𝐹𝑣) = (𝐹𝑤) ↔ (2nd𝑣) = (2nd𝑤)))
14 fveq2 6103 . . . . . . . . . 10 (𝑝 = 𝑣 → (1st𝑝) = (1st𝑣))
1514fveq2d 6107 . . . . . . . . 9 (𝑝 = 𝑣 → (#‘(1st𝑝)) = (#‘(1st𝑣)))
1615eqeq1d 2612 . . . . . . . 8 (𝑝 = 𝑣 → ((#‘(1st𝑝)) = 𝑁 ↔ (#‘(1st𝑣)) = 𝑁))
17 fveq2 6103 . . . . . . . . . 10 (𝑝 = 𝑣 → (2nd𝑝) = (2nd𝑣))
1817fveq1d 6105 . . . . . . . . 9 (𝑝 = 𝑣 → ((2nd𝑝)‘0) = ((2nd𝑣)‘0))
1918eqeq1d 2612 . . . . . . . 8 (𝑝 = 𝑣 → (((2nd𝑝)‘0) = 𝑃 ↔ ((2nd𝑣)‘0) = 𝑃))
2016, 19anbi12d 743 . . . . . . 7 (𝑝 = 𝑣 → (((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃) ↔ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)))
2120, 1elrab2 3333 . . . . . 6 (𝑣𝑇 ↔ (𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)))
22 fveq2 6103 . . . . . . . . . 10 (𝑝 = 𝑤 → (1st𝑝) = (1st𝑤))
2322fveq2d 6107 . . . . . . . . 9 (𝑝 = 𝑤 → (#‘(1st𝑝)) = (#‘(1st𝑤)))
2423eqeq1d 2612 . . . . . . . 8 (𝑝 = 𝑤 → ((#‘(1st𝑝)) = 𝑁 ↔ (#‘(1st𝑤)) = 𝑁))
25 fveq2 6103 . . . . . . . . . 10 (𝑝 = 𝑤 → (2nd𝑝) = (2nd𝑤))
2625fveq1d 6105 . . . . . . . . 9 (𝑝 = 𝑤 → ((2nd𝑝)‘0) = ((2nd𝑤)‘0))
2726eqeq1d 2612 . . . . . . . 8 (𝑝 = 𝑤 → (((2nd𝑝)‘0) = 𝑃 ↔ ((2nd𝑤)‘0) = 𝑃))
2824, 27anbi12d 743 . . . . . . 7 (𝑝 = 𝑤 → (((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃) ↔ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)))
2928, 1elrab2 3333 . . . . . 6 (𝑤𝑇 ↔ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)))
3021, 29anbi12i 729 . . . . 5 ((𝑣𝑇𝑤𝑇) ↔ ((𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)) ∧ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃))))
31 3simpb 1052 . . . . . . 7 ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → (𝑉 USGrph 𝐸𝑁 ∈ ℕ0))
3231adantr 480 . . . . . 6 (((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) ∧ ((𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)) ∧ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)))) → (𝑉 USGrph 𝐸𝑁 ∈ ℕ0))
33 simpl 472 . . . . . . . . 9 (((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃) → (#‘(1st𝑣)) = 𝑁)
3433anim2i 591 . . . . . . . 8 ((𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)) → (𝑣 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑣)) = 𝑁))
3534adantr 480 . . . . . . 7 (((𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)) ∧ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃))) → (𝑣 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑣)) = 𝑁))
3635adantl 481 . . . . . 6 (((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) ∧ ((𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)) ∧ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)))) → (𝑣 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑣)) = 𝑁))
37 simpl 472 . . . . . . . . 9 (((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃) → (#‘(1st𝑤)) = 𝑁)
3837anim2i 591 . . . . . . . 8 ((𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)) → (𝑤 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑤)) = 𝑁))
3938adantl 481 . . . . . . 7 (((𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)) ∧ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃))) → (𝑤 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑤)) = 𝑁))
4039adantl 481 . . . . . 6 (((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) ∧ ((𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)) ∧ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)))) → (𝑤 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑤)) = 𝑁))
41 usg2wlkeq2 26237 . . . . . 6 (((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) ∧ (𝑣 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑣)) = 𝑁) ∧ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑤)) = 𝑁)) → ((2nd𝑣) = (2nd𝑤) → 𝑣 = 𝑤))
4232, 36, 40, 41syl3anc 1318 . . . . 5 (((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) ∧ ((𝑣 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑣)) = 𝑁 ∧ ((2nd𝑣)‘0) = 𝑃)) ∧ (𝑤 ∈ (𝑉 Walks 𝐸) ∧ ((#‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)))) → ((2nd𝑣) = (2nd𝑤) → 𝑣 = 𝑤))
4330, 42sylan2b 491 . . . 4 (((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) ∧ (𝑣𝑇𝑤𝑇)) → ((2nd𝑣) = (2nd𝑤) → 𝑣 = 𝑤))
4413, 43sylbid 229 . . 3 (((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) ∧ (𝑣𝑇𝑤𝑇)) → ((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤))
4544ralrimivva 2954 . 2 ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → ∀𝑣𝑇𝑤𝑇 ((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤))
46 dff13 6416 . 2 (𝐹:𝑇1-1𝑊 ↔ (𝐹:𝑇𝑊 ∧ ∀𝑣𝑇𝑤𝑇 ((𝐹𝑣) = (𝐹𝑤) → 𝑣 = 𝑤)))
475, 45, 46sylanbrc 695 1 ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇1-1𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900   class class class wbr 4583  cmpt 4643  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  0cc0 9815  0cn0 11169  #chash 12979   USGrph cusg 25859   Walks cwalk 26026   WWalksN cwwlkn 26206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-usgra 25862  df-wlk 26036  df-wwlk 26207  df-wwlkn 26208
This theorem is referenced by:  wlkiswwlkbij  26248
  Copyright terms: Public domain W3C validator