MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkswlks Structured version   Visualization version   GIF version

Theorem clwlkswlks 26286
Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.)
Assertion
Ref Expression
clwlkswlks (𝑊 ∈ (𝑉 ClWalks 𝐸) → 𝑊 ∈ (𝑉 Walks 𝐸))

Proof of Theorem clwlkswlks
Dummy variables 𝑒 𝑓 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clwlk 26278 . . 3 ClWalks = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
21elmpt2cl 6774 . 2 (𝑊 ∈ (𝑉 ClWalks 𝐸) → (𝑉 ∈ V ∧ 𝐸 ∈ V))
3 clwlk 26281 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 ClWalks 𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
43eleq2d 2673 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑊 ∈ (𝑉 ClWalks 𝐸) ↔ 𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))}))
5 simpl 472 . . . . . . 7 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓))) → 𝑓(𝑉 Walks 𝐸)𝑝)
65a1i 11 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓))) → 𝑓(𝑉 Walks 𝐸)𝑝))
76ssopab2dv 4929 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} ⊆ {⟨𝑓, 𝑝⟩ ∣ 𝑓(𝑉 Walks 𝐸)𝑝})
87sseld 3567 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} → 𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ 𝑓(𝑉 Walks 𝐸)𝑝}))
9 elopab 4908 . . . . 5 (𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ 𝑓(𝑉 Walks 𝐸)𝑝} ↔ ∃𝑓𝑝(𝑊 = ⟨𝑓, 𝑝⟩ ∧ 𝑓(𝑉 Walks 𝐸)𝑝))
10 df-br 4584 . . . . . . . . . 10 (𝑓(𝑉 Walks 𝐸)𝑝 ↔ ⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸))
1110biimpi 205 . . . . . . . . 9 (𝑓(𝑉 Walks 𝐸)𝑝 → ⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸))
1211adantl 481 . . . . . . . 8 ((𝑊 = ⟨𝑓, 𝑝⟩ ∧ 𝑓(𝑉 Walks 𝐸)𝑝) → ⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸))
13 eleq1 2676 . . . . . . . . 9 (𝑊 = ⟨𝑓, 𝑝⟩ → (𝑊 ∈ (𝑉 Walks 𝐸) ↔ ⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸)))
1413adantr 480 . . . . . . . 8 ((𝑊 = ⟨𝑓, 𝑝⟩ ∧ 𝑓(𝑉 Walks 𝐸)𝑝) → (𝑊 ∈ (𝑉 Walks 𝐸) ↔ ⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸)))
1512, 14mpbird 246 . . . . . . 7 ((𝑊 = ⟨𝑓, 𝑝⟩ ∧ 𝑓(𝑉 Walks 𝐸)𝑝) → 𝑊 ∈ (𝑉 Walks 𝐸))
1615a1i 11 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑊 = ⟨𝑓, 𝑝⟩ ∧ 𝑓(𝑉 Walks 𝐸)𝑝) → 𝑊 ∈ (𝑉 Walks 𝐸)))
1716exlimdvv 1849 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∃𝑓𝑝(𝑊 = ⟨𝑓, 𝑝⟩ ∧ 𝑓(𝑉 Walks 𝐸)𝑝) → 𝑊 ∈ (𝑉 Walks 𝐸)))
189, 17syl5bi 231 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ 𝑓(𝑉 Walks 𝐸)𝑝} → 𝑊 ∈ (𝑉 Walks 𝐸)))
198, 18syld 46 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} → 𝑊 ∈ (𝑉 Walks 𝐸)))
204, 19sylbid 229 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑊 ∈ (𝑉 ClWalks 𝐸) → 𝑊 ∈ (𝑉 Walks 𝐸)))
212, 20mpcom 37 1 (𝑊 ∈ (𝑉 ClWalks 𝐸) → 𝑊 ∈ (𝑉 Walks 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cop 4131   class class class wbr 4583  {copab 4642  cfv 5804  (class class class)co 6549  0cc0 9815  #chash 12979   Walks cwalk 26026   ClWalks cclwlk 26275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-clwlk 26278
This theorem is referenced by:  clwlksarewlks  26287  clwlkfoclwwlk  26372  clwlkf1clwwlk  26377
  Copyright terms: Public domain W3C validator