Step | Hyp | Ref
| Expression |
1 | | frgr2wwlkeu.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | frgr2wwlkn0 41493 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅) |
3 | 1 | elwwlks2ons3 41159 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FriendGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
4 | 3 | 3expb 1258 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
5 | 4 | 3adant3 1074 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
6 | 1 | elwwlks2ons3 41159 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FriendGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
7 | 6 | 3expb 1258 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
8 | 7 | 3adant3 1074 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
9 | 5, 8 | anbi12d 743 |
. . . . . . . 8
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))) |
10 | 1 | frgr2wwlkeu 41492 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑥 ∈ 𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
11 | | eqidd 2611 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐴) |
12 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
13 | | eqidd 2611 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐵) |
14 | 11, 12, 13 | s3eqd 13460 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑦 → 〈“𝐴𝑥𝐵”〉 = 〈“𝐴𝑦𝐵”〉) |
15 | 14 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → (〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
16 | 15 | reu4 3367 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (∃𝑥 ∈ 𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦))) |
17 | | eqidd 2611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑐 → 𝐴 = 𝐴) |
18 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑐 → 𝑥 = 𝑐) |
19 | | eqidd 2611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑐 → 𝐵 = 𝐵) |
20 | 17, 18, 19 | s3eqd 13460 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑐 → 〈“𝐴𝑥𝐵”〉 = 〈“𝐴𝑐𝐵”〉) |
21 | 20 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 𝑐 → (〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
22 | 21 | anbi1d 737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 𝑐 → ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
23 | | equequ1 1939 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 𝑐 → (𝑥 = 𝑦 ↔ 𝑐 = 𝑦)) |
24 | | equcom 1932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 = 𝑦 ↔ 𝑦 = 𝑐) |
25 | 23, 24 | syl6bb 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = 𝑐 → (𝑥 = 𝑦 ↔ 𝑦 = 𝑐)) |
26 | 22, 25 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑐 → (((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) ↔ ((〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑦 = 𝑐))) |
27 | | eqidd 2611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = 𝑑 → 𝐴 = 𝐴) |
28 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = 𝑑 → 𝑦 = 𝑑) |
29 | | eqidd 2611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = 𝑑 → 𝐵 = 𝐵) |
30 | 27, 28, 29 | s3eqd 13460 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = 𝑑 → 〈“𝐴𝑦𝐵”〉 = 〈“𝐴𝑑𝐵”〉) |
31 | 30 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = 𝑑 → (〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
32 | 31 | anbi2d 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = 𝑑 → ((〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
33 | | ancom 465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
34 | 32, 33 | syl6bb 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑑 → ((〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
35 | | equequ1 1939 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑑 → (𝑦 = 𝑐 ↔ 𝑑 = 𝑐)) |
36 | 34, 35 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑑 → (((〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑦 = 𝑐) ↔ ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐))) |
37 | 26, 36 | rspc2va 3294 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) |
38 | | eqidd 2611 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 = 𝑐 → 𝐴 = 𝐴) |
39 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 = 𝑐 → 𝑑 = 𝑐) |
40 | | eqidd 2611 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑑 = 𝑐 → 𝐵 = 𝐵) |
41 | 38, 39, 40 | s3eqd 13460 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑 = 𝑐 → 〈“𝐴𝑑𝐵”〉 = 〈“𝐴𝑐𝐵”〉) |
42 | 37, 41 | syl6 34 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 〈“𝐴𝑑𝐵”〉 = 〈“𝐴𝑐𝐵”〉)) |
43 | 42 | expcom 450 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) → ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) → ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 〈“𝐴𝑑𝐵”〉 = 〈“𝐴𝑐𝐵”〉))) |
44 | 16, 43 | simplbiim 657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) → ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 〈“𝐴𝑑𝐵”〉 = 〈“𝐴𝑐𝐵”〉))) |
45 | 10, 44 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉) → ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 〈“𝐴𝑑𝐵”〉 = 〈“𝐴𝑐𝐵”〉))) |
46 | 45 | impl 648 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) ∧ 𝑑 ∈ 𝑉) → ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 〈“𝐴𝑑𝐵”〉 = 〈“𝐴𝑐𝐵”〉)) |
47 | | eleq1 2676 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 〈“𝐴𝑑𝐵”〉 → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
48 | | eleq1 2676 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 〈“𝐴𝑐𝐵”〉 → (𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
49 | 47, 48 | bi2anan9 913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 𝑡 = 〈“𝐴𝑐𝐵”〉) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
50 | | eqeq12 2623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 𝑡 = 〈“𝐴𝑐𝐵”〉) → (𝑤 = 𝑡 ↔ 〈“𝐴𝑑𝐵”〉 = 〈“𝐴𝑐𝐵”〉)) |
51 | 49, 50 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 𝑡 = 〈“𝐴𝑐𝐵”〉) → (((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡) ↔ ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 〈“𝐴𝑑𝐵”〉 = 〈“𝐴𝑐𝐵”〉))) |
52 | 46, 51 | syl5ibr 235 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 𝑡 = 〈“𝐴𝑐𝐵”〉) → ((((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) ∧ 𝑑 ∈ 𝑉) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
53 | 52 | ex 449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 〈“𝐴𝑑𝐵”〉 → (𝑡 = 〈“𝐴𝑐𝐵”〉 → ((((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) ∧ 𝑑 ∈ 𝑉) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
54 | 53 | com23 84 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 〈“𝐴𝑑𝐵”〉 → ((((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) ∧ 𝑑 ∈ 𝑉) → (𝑡 = 〈“𝐴𝑐𝐵”〉 → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
55 | 54 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) ∧ 𝑑 ∈ 𝑉) → (𝑡 = 〈“𝐴𝑐𝐵”〉 → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
56 | 55 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) ∧ 𝑑 ∈ 𝑉) → ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝑡 = 〈“𝐴𝑐𝐵”〉 → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
57 | 56 | rexlimdva 3013 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) → (∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝑡 = 〈“𝐴𝑐𝐵”〉 → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
58 | 57 | com23 84 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) → (𝑡 = 〈“𝐴𝑐𝐵”〉 → (∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
59 | 58 | adantrd 483 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ 𝑐 ∈ 𝑉) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
60 | 59 | rexlimdva 3013 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
61 | 60 | com13 86 |
. . . . . . . . . 10
⊢
(∃𝑑 ∈
𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
62 | 61 | imp 444 |
. . . . . . . . 9
⊢
((∃𝑑 ∈
𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
63 | 62 | com12 32 |
. . . . . . . 8
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
64 | 9, 63 | sylbid 229 |
. . . . . . 7
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
65 | 64 | pm2.43d 51 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) |
66 | 65 | alrimivv 1843 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∀𝑤∀𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) |
67 | | eleq1 2676 |
. . . . . 6
⊢ (𝑤 = 𝑡 → (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
68 | 67 | mo4 2505 |
. . . . 5
⊢
(∃*𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∀𝑤∀𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) |
69 | 66, 68 | sylibr 223 |
. . . 4
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃*𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
70 | | n0moeu 3893 |
. . . 4
⊢ ((𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅ → (∃*𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
71 | 69, 70 | syl5ib 233 |
. . 3
⊢ ((𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅ → ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
72 | 2, 71 | mpcom 37 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
73 | | ovex 6577 |
. . 3
⊢ (𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V |
74 | | euhash1 13069 |
. . 3
⊢ ((𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V → ((#‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
75 | 73, 74 | mp1i 13 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((#‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
76 | 72, 75 | mpbird 246 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (#‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1) |