Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elwwlks2ons3 Structured version   Visualization version   GIF version

Theorem elwwlks2ons3 41159
 Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypothesis
Ref Expression
elwwlks2ons3.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑈,𝑏   𝑉,𝑏   𝑊,𝑏

Proof of Theorem elwwlks2ons3
StepHypRef Expression
1 simpr 476 . . . . 5 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2 elwwlks2ons3.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
32wwlknon 41053 . . . . . . . 8 ((𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalkSN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶)))
433adant1 1072 . . . . . . 7 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalkSN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶)))
5 wwlknbp2 41063 . . . . . . . . . 10 (𝑊 ∈ (2 WWalkSN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (2 + 1)))
6 2p1e3 11028 . . . . . . . . . . . 12 (2 + 1) = 3
76eqeq2i 2622 . . . . . . . . . . 11 ((#‘𝑊) = (2 + 1) ↔ (#‘𝑊) = 3)
8 1ex 9914 . . . . . . . . . . . . . . . . 17 1 ∈ V
98tpid2 4247 . . . . . . . . . . . . . . . 16 1 ∈ {0, 1, 2}
10 oveq2 6557 . . . . . . . . . . . . . . . . 17 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = (0..^3))
11 fzo0to3tp 12421 . . . . . . . . . . . . . . . . 17 (0..^3) = {0, 1, 2}
1210, 11syl6eq 2660 . . . . . . . . . . . . . . . 16 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = {0, 1, 2})
139, 12syl5eleqr 2695 . . . . . . . . . . . . . . 15 ((#‘𝑊) = 3 → 1 ∈ (0..^(#‘𝑊)))
14 wrdsymbcl 13173 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(#‘𝑊))) → (𝑊‘1) ∈ (Vtx‘𝐺))
1513, 14sylan2 490 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) → (𝑊‘1) ∈ (Vtx‘𝐺))
16153ad2ant1 1075 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (𝑊‘1) ∈ (Vtx‘𝐺))
17 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) → (#‘𝑊) = 3)
18173ad2ant1 1075 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (#‘𝑊) = 3)
1918adantr 480 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (#‘𝑊) = 3)
20 simpl 472 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘0) = 𝐴)
21 eqidd 2611 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘1) = (𝑊‘1))
22 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘2) = 𝐶)
2320, 21, 223jca 1235 . . . . . . . . . . . . . . . . 17 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
24233ad2ant2 1076 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
2524adantr 480 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
262eqcomi 2619 . . . . . . . . . . . . . . . . . . . . . 22 (Vtx‘𝐺) = 𝑉
2726wrdeqi 13183 . . . . . . . . . . . . . . . . . . . . 21 Word (Vtx‘𝐺) = Word 𝑉
2827eleq2i 2680 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
2928biimpi 205 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
3029adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) → 𝑊 ∈ Word 𝑉)
31303ad2ant1 1075 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → 𝑊 ∈ Word 𝑉)
3231adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word 𝑉)
33 simpl32 1136 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐴𝑉)
3426eleq2i 2680 . . . . . . . . . . . . . . . . . 18 ((𝑊‘1) ∈ (Vtx‘𝐺) ↔ (𝑊‘1) ∈ 𝑉)
3534biimpi 205 . . . . . . . . . . . . . . . . 17 ((𝑊‘1) ∈ (Vtx‘𝐺) → (𝑊‘1) ∈ 𝑉)
3635adantl 481 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊‘1) ∈ 𝑉)
37 simpl33 1137 . . . . . . . . . . . . . . . 16 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐶𝑉)
38 eqwrds3 13552 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉 ∧ (𝑊‘1) ∈ 𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3932, 33, 36, 37, 38syl13anc 1320 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
4019, 25, 39mpbir2and 959 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
4140, 36jca 553 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
4216, 41mpdan 699 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐺𝑈𝐴𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
43423exp 1256 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = 3) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
447, 43sylan2b 491 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
455, 44syl 17 . . . . . . . . 9 (𝑊 ∈ (2 WWalkSN 𝐺) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
46453impib 1254 . . . . . . . 8 ((𝑊 ∈ (2 WWalkSN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
4746com12 32 . . . . . . 7 ((𝐺𝑈𝐴𝑉𝐶𝑉) → ((𝑊 ∈ (2 WWalkSN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
484, 47sylbid 229 . . . . . 6 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
4948imp 444 . . . . 5 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
50 anass 679 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
511, 49, 50sylanbrc 695 . . . 4 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉))
52 simpr 476 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉)
53 eqidd 2611 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝐴 = 𝐴)
54 id 22 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝑏 = (𝑊‘1))
55 eqidd 2611 . . . . . . . 8 (𝑏 = (𝑊‘1) → 𝐶 = 𝐶)
5653, 54, 55s3eqd 13460 . . . . . . 7 (𝑏 = (𝑊‘1) → ⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩)
57 eqeq2 2621 . . . . . . . 8 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ↔ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩))
58 eleq1 2676 . . . . . . . 8 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
5957, 58anbi12d 743 . . . . . . 7 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
6056, 59syl 17 . . . . . 6 (𝑏 = (𝑊‘1) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
6160adantl 481 . . . . 5 ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
62 simpr 476 . . . . . . 7 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
63 eleq1 2676 . . . . . . . 8 (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6463biimpac 502 . . . . . . 7 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
6562, 64jca 553 . . . . . 6 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6665adantr 480 . . . . 5 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6752, 61, 66rspcedvd 3289 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6851, 67syl 17 . . 3 (((𝐺𝑈𝐴𝑉𝐶𝑉) ∧ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
6968ex 449 . 2 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
70 eleq1 2676 . . . . . 6 (⟨“𝐴𝑏𝐶”⟩ = 𝑊 → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7170eqcoms 2618 . . . . 5 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7271biimpa 500 . . . 4 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
7372a1i 11 . . 3 ((𝐺𝑈𝐴𝑉𝐶𝑉) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7473rexlimdvw 3016 . 2 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
7569, 74impbid 201 1 ((𝐺𝑈𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  {ctp 4129  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  2c2 10947  3c3 10948  ..^cfzo 12334  #chash 12979  Word cword 13146  ⟨“cs3 13438  Vtxcvtx 25673   WWalkSN cwwlksn 41029   WWalksNOn cwwlksnon 41030 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-wwlks 41033  df-wwlksn 41034  df-wwlksnon 41035 This theorem is referenced by:  elwwlks2on  41162  frgr2wwlk1  41494
 Copyright terms: Public domain W3C validator