Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eupth2 Structured version   Visualization version   GIF version

Theorem eupth2 41407
Description: The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph )
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eupth2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem eupth2
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupth2.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 eupth2.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
3 eupth2.g . . . . . . 7 (𝜑𝐺 ∈ UPGraph )
4 eupth2.f . . . . . . 7 (𝜑 → Fun 𝐼)
5 eupth2.p . . . . . . 7 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
6 eqid 2610 . . . . . . 7 𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩
71, 2, 3, 4, 5, 6eupthvdres 41403 . . . . . 6 (𝜑 → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩) = (VtxDeg‘𝐺))
87fveq1d 6105 . . . . 5 (𝜑 → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥) = ((VtxDeg‘𝐺)‘𝑥))
98breq2d 4595 . . . 4 (𝜑 → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)))
109notbid 307 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)))
1110rabbidv 3164 . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
12 eupthis1wlk 41380 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(1Walks‘𝐺)𝑃)
13 1wlkcl 40820 . . . 4 (𝐹(1Walks‘𝐺)𝑃 → (#‘𝐹) ∈ ℕ0)
145, 12, 133syl 18 . . 3 (𝜑 → (#‘𝐹) ∈ ℕ0)
15 nn0re 11178 . . . . 5 ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ∈ ℝ)
1615leidd 10473 . . . 4 ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ≤ (#‘𝐹))
17 breq1 4586 . . . . . . 7 (𝑚 = 0 → (𝑚 ≤ (#‘𝐹) ↔ 0 ≤ (#‘𝐹)))
18 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑚 = 0 → (0..^𝑚) = (0..^0))
1918imaeq2d 5385 . . . . . . . . . . . . . . 15 (𝑚 = 0 → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^0)))
2019reseq2d 5317 . . . . . . . . . . . . . 14 (𝑚 = 0 → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^0))))
2120opeq2d 4347 . . . . . . . . . . . . 13 (𝑚 = 0 → ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)
2221fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = 0 → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩) = (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩))
2322fveq1d 6105 . . . . . . . . . . 11 (𝑚 = 0 → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥))
2423breq2d 4595 . . . . . . . . . 10 (𝑚 = 0 → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)))
2524notbid 307 . . . . . . . . 9 (𝑚 = 0 → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)))
2625rabbidv 3164 . . . . . . . 8 (𝑚 = 0 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)})
27 fveq2 6103 . . . . . . . . . 10 (𝑚 = 0 → (𝑃𝑚) = (𝑃‘0))
2827eqeq2d 2620 . . . . . . . . 9 (𝑚 = 0 → ((𝑃‘0) = (𝑃𝑚) ↔ (𝑃‘0) = (𝑃‘0)))
2927preq2d 4219 . . . . . . . . 9 (𝑚 = 0 → {(𝑃‘0), (𝑃𝑚)} = {(𝑃‘0), (𝑃‘0)})
3028, 29ifbieq2d 4061 . . . . . . . 8 (𝑚 = 0 → if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))
3126, 30eqeq12d 2625 . . . . . . 7 (𝑚 = 0 → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) ↔ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})))
3217, 31imbi12d 333 . . . . . 6 (𝑚 = 0 → ((𝑚 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)})) ↔ (0 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))))
3332imbi2d 329 . . . . 5 (𝑚 = 0 → ((𝜑 → (𝑚 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}))) ↔ (𝜑 → (0 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})))))
34 breq1 4586 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 ≤ (#‘𝐹) ↔ 𝑛 ≤ (#‘𝐹)))
35 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → (0..^𝑚) = (0..^𝑛))
3635imaeq2d 5385 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^𝑛)))
3736reseq2d 5317 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^𝑛))))
3837opeq2d 4347 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)
3938fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩) = (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩))
4039fveq1d 6105 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥))
4140breq2d 4595 . . . . . . . . . 10 (𝑚 = 𝑛 → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)))
4241notbid 307 . . . . . . . . 9 (𝑚 = 𝑛 → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)))
4342rabbidv 3164 . . . . . . . 8 (𝑚 = 𝑛 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)})
44 fveq2 6103 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑃𝑚) = (𝑃𝑛))
4544eqeq2d 2620 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑃‘0) = (𝑃𝑚) ↔ (𝑃‘0) = (𝑃𝑛)))
4644preq2d 4219 . . . . . . . . 9 (𝑚 = 𝑛 → {(𝑃‘0), (𝑃𝑚)} = {(𝑃‘0), (𝑃𝑛)})
4745, 46ifbieq2d 4061 . . . . . . . 8 (𝑚 = 𝑛 → if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))
4843, 47eqeq12d 2625 . . . . . . 7 (𝑚 = 𝑛 → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) ↔ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})))
4934, 48imbi12d 333 . . . . . 6 (𝑚 = 𝑛 → ((𝑚 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)})) ↔ (𝑛 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))))
5049imbi2d 329 . . . . 5 (𝑚 = 𝑛 → ((𝜑 → (𝑚 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}))) ↔ (𝜑 → (𝑛 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})))))
51 breq1 4586 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑚 ≤ (#‘𝐹) ↔ (𝑛 + 1) ≤ (#‘𝐹)))
52 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 + 1) → (0..^𝑚) = (0..^(𝑛 + 1)))
5352imaeq2d 5385 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 + 1) → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^(𝑛 + 1))))
5453reseq2d 5317 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1)))))
5554opeq2d 4347 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)
5655fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩) = (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩))
5756fveq1d 6105 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥))
5857breq2d 4595 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)))
5958notbid 307 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)))
6059rabbidv 3164 . . . . . . . 8 (𝑚 = (𝑛 + 1) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)})
61 fveq2 6103 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → (𝑃𝑚) = (𝑃‘(𝑛 + 1)))
6261eqeq2d 2620 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → ((𝑃‘0) = (𝑃𝑚) ↔ (𝑃‘0) = (𝑃‘(𝑛 + 1))))
6361preq2d 4219 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → {(𝑃‘0), (𝑃𝑚)} = {(𝑃‘0), (𝑃‘(𝑛 + 1))})
6462, 63ifbieq2d 4061 . . . . . . . 8 (𝑚 = (𝑛 + 1) → if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))
6560, 64eqeq12d 2625 . . . . . . 7 (𝑚 = (𝑛 + 1) → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) ↔ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))
6651, 65imbi12d 333 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑚 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)})) ↔ ((𝑛 + 1) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
6766imbi2d 329 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝜑 → (𝑚 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}))) ↔ (𝜑 → ((𝑛 + 1) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))))
68 breq1 4586 . . . . . . 7 (𝑚 = (#‘𝐹) → (𝑚 ≤ (#‘𝐹) ↔ (#‘𝐹) ≤ (#‘𝐹)))
69 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑚 = (#‘𝐹) → (0..^𝑚) = (0..^(#‘𝐹)))
7069imaeq2d 5385 . . . . . . . . . . . . . . 15 (𝑚 = (#‘𝐹) → (𝐹 “ (0..^𝑚)) = (𝐹 “ (0..^(#‘𝐹))))
7170reseq2d 5317 . . . . . . . . . . . . . 14 (𝑚 = (#‘𝐹) → (𝐼 ↾ (𝐹 “ (0..^𝑚))) = (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹)))))
7271opeq2d 4347 . . . . . . . . . . . . 13 (𝑚 = (#‘𝐹) → ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)
7372fveq2d 6107 . . . . . . . . . . . 12 (𝑚 = (#‘𝐹) → (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩) = (VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩))
7473fveq1d 6105 . . . . . . . . . . 11 (𝑚 = (#‘𝐹) → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥))
7574breq2d 4595 . . . . . . . . . 10 (𝑚 = (#‘𝐹) → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)))
7675notbid 307 . . . . . . . . 9 (𝑚 = (#‘𝐹) → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)))
7776rabbidv 3164 . . . . . . . 8 (𝑚 = (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)})
78 fveq2 6103 . . . . . . . . . 10 (𝑚 = (#‘𝐹) → (𝑃𝑚) = (𝑃‘(#‘𝐹)))
7978eqeq2d 2620 . . . . . . . . 9 (𝑚 = (#‘𝐹) → ((𝑃‘0) = (𝑃𝑚) ↔ (𝑃‘0) = (𝑃‘(#‘𝐹))))
8078preq2d 4219 . . . . . . . . 9 (𝑚 = (#‘𝐹) → {(𝑃‘0), (𝑃𝑚)} = {(𝑃‘0), (𝑃‘(#‘𝐹))})
8179, 80ifbieq2d 4061 . . . . . . . 8 (𝑚 = (#‘𝐹) → if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}))
8277, 81eqeq12d 2625 . . . . . . 7 (𝑚 = (#‘𝐹) → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}) ↔ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})))
8368, 82imbi12d 333 . . . . . 6 (𝑚 = (#‘𝐹) → ((𝑚 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)})) ↔ ((#‘𝐹) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}))))
8483imbi2d 329 . . . . 5 (𝑚 = (#‘𝐹) → ((𝜑 → (𝑚 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑚)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑚), ∅, {(𝑃‘0), (𝑃𝑚)}))) ↔ (𝜑 → ((#‘𝐹) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})))))
851, 2, 3, 4, 5eupth2lemb 41405 . . . . . . 7 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
86 eqid 2610 . . . . . . . 8 (𝑃‘0) = (𝑃‘0)
8786iftruei 4043 . . . . . . 7 if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}) = ∅
8885, 87syl6eqr 2662 . . . . . 6 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)}))
8988a1d 25 . . . . 5 (𝜑 → (0 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘0), ∅, {(𝑃‘0), (𝑃‘0)})))
901, 2, 3, 4, 5eupth2lems 41406 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
9190expcom 450 . . . . . 6 (𝑛 ∈ ℕ0 → (𝜑 → ((𝑛 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))))
9291a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑛 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝜑 → ((𝑛 + 1) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))))
9333, 50, 67, 84, 89, 92nn0ind 11348 . . . 4 ((#‘𝐹) ∈ ℕ0 → (𝜑 → ((#‘𝐹) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}))))
9416, 93mpid 43 . . 3 ((#‘𝐹) ∈ ℕ0 → (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))})))
9514, 94mpcom 37 . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}))
9611, 95eqtr3d 2646 1 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wcel 1977  {crab 2900  c0 3874  ifcif 4036  {cpr 4127  cop 4131   class class class wbr 4583  cres 5040  cima 5041  Fun wfun 5798  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  2c2 10947  0cn0 11169  ..^cfzo 12334  #chash 12979  cdvds 14821  Vtxcvtx 25673  iEdgciedg 25674   UPGraph cupgr 25747  VtxDegcvtxdg 40681  1Walksc1wlks 40796  EulerPathsceupth 41364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-edga 25793  df-uspgr 40380  df-vtxdg 40682  df-1wlks 40800  df-wlks 40801  df-trls 40901  df-eupth 41365
This theorem is referenced by:  eulerpathpr  41408  eulercrct  41410
  Copyright terms: Public domain W3C validator