MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ind Structured version   Visualization version   GIF version

Theorem nn0ind 11348
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
Hypotheses
Ref Expression
nn0ind.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind.5 𝜓
nn0ind.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind
StepHypRef Expression
1 elnn0z 11267 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
2 0z 11265 . . 3 0 ∈ ℤ
3 nn0ind.1 . . . 4 (𝑥 = 0 → (𝜑𝜓))
4 nn0ind.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜒))
5 nn0ind.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
6 nn0ind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
7 nn0ind.5 . . . . 5 𝜓
87a1i 11 . . . 4 (0 ∈ ℤ → 𝜓)
9 elnn0z 11267 . . . . . 6 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))
10 nn0ind.6 . . . . . 6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
119, 10sylbir 224 . . . . 5 ((𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
12113adant1 1072 . . . 4 ((0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦) → (𝜒𝜃))
133, 4, 5, 6, 8, 12uzind 11345 . . 3 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
142, 13mp3an1 1403 . 2 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → 𝜏)
151, 14sylbi 206 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  0cn0 11169  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255
This theorem is referenced by:  nn0indALT  11349  nn0indd  11350  zindd  11354  fzennn  12629  mulexp  12761  expadd  12764  expmul  12767  leexp1a  12781  bernneq  12852  modexp  12861  faccl  12932  facdiv  12936  facwordi  12938  faclbnd  12939  faclbnd6  12948  facubnd  12949  bccl  12971  brfi1indALT  13137  brfi1indALTOLD  13143  wrdind  13328  wrd2ind  13329  cshweqrep  13418  rtrclreclem4  13649  relexpindlem  13651  cjexp  13738  absexp  13892  iseraltlem2  14261  binom  14401  bcxmas  14406  climcndslem1  14420  binomfallfac  14611  demoivreALT  14770  ruclem8  14805  odd2np1lem  14902  bitsinv1  15002  sadcadd  15018  sadadd2  15020  saddisjlem  15024  smu01lem  15045  smumullem  15052  alginv  15126  prmfac1  15269  pcfac  15441  ramcl  15571  mhmmulg  17406  psgnunilem3  17739  sylow1lem1  17836  efgsrel  17970  efgsfo  17975  efgred  17984  srgmulgass  18354  srgpcomp  18355  srgbinom  18368  lmodvsmmulgdi  18721  assamulgscm  19171  mplcoe3  19287  cnfldexp  19598  tmdmulg  21706  expcn  22483  dvnadd  23498  dvnres  23500  dvnfre  23521  ply1divex  23700  fta1g  23731  plyco  23801  dgrco  23835  dvnply2  23846  plydivex  23856  fta1  23867  cxpmul2  24235  facgam  24592  dchrisumlem1  24978  qabvle  25114  qabvexp  25115  ostth2lem2  25123  rusgranumwlk  26484  eupath2  26507  ex-ind-dvds  26710  subfacval2  30423  cvmliftlem7  30527  bccolsum  30878  faclim  30885  faclim2  30887  heiborlem4  32783  mzpexpmpt  36326  pell14qrexpclnn0  36448  rmxypos  36532  jm2.17a  36545  jm2.17b  36546  rmygeid  36549  jm2.19lem3  36576  hbtlem5  36717  cnsrexpcl  36754  relexpiidm  37015  fperiodmullem  38458  stoweidlem17  38910  stoweidlem19  38912  wallispilem3  38960  fmtnorec2  39993  rusgrnumwwlk  41178  eupth2  41407  lmodvsmdi  41957
  Copyright terms: Public domain W3C validator